深入了解数据库响应对于单个web事务的效率。跟踪在应用程序中执行后台事务的数据库响应时间,这些事务是在后台线程中生成的。数据库性能监视器可以查明阻碍优化应用程序性能的SQL语句,并允许用户分析错误跟踪,在数据库性能问题影响您的业务之前解决它们。获取详细的性能指标,识别慢速的数据库调用、以及通过详细的图形和表格表示数据库的总体性能。
数据库监控是Applications Manager重要功能之一,它能够帮助数据库管理员(DBA)和系统管理员监控包含Oracle、SQL Server、MySQL、Sybase、IBM DB2等多种类异构型的数据库环境。作为无代理的数据库监控工具,Applications Manager通过执行数据库查询来采集性能数据。当数据库性能超过阈值时,生成告警通知管理员。通过直观丰富的数据库性能报表,DBA可以快速排查故障问题以及规划容量。网页链接
数据库管理员的主要职责为:
1、数据库管理员规定用户访问权限和为不同用户组分配资源。
2、监视监控数据库的警告日志,定期做备份删除。
3、对数据库的备份策略要根据实际要求进行更改,数据的日常备份情况进行监控。
4、规范数据库用户的管理定期对管理员等重要用户密码进行修改。
5、对SQL语句的书写规范的要求一个SQL语句,如果写得不理想,对数据库的影响是很大的。
扩展资料技术分工
产品的整个生命周期里数据库管理员的职责重要而广泛,这催生了各个纵向的运维技术方向,凡是关系到数据库质量、效率、成本、安全等方面的工作,及涉及到的技术、组件,主要包括:
1、数据库监控技术:包括监控平台的研发、应用,服务监控准确性、实时性、全面性的保障。
2、数据库故障管理:包括服务的故障预案设计,预案的自动化执行,故障的总结并反馈到产品/系统的设计层面进行优化以提高产品的稳定性。
3、数据库容量管理:测量服务的容量,规划服务的机房建设,扩容、迁移等工作。
4、数据库性能优化:从各个方向,包括SQL优化、参数优化、应用优化、客户端优化等,提高数据库的性能和响应速度,改善用户体验。
参考资料:百度百科-数据库管理员
统一监控平台,说到底本质上也是一个监控系统,监控的基本能力是必不可少的,回归到监控的本质,先梳理下整个监控体系:
① 监控系统的本质是通过发现故障、解决故障、预防故障来为了保障业务的稳定。
② 监控体系一般来说包括数据采集、数据检测、告警管理、故障管理、视图管理和监控管理6大模块。而数据采集、数据检测和告警处理是监控的最小闭环,但如果想要真正把监控系统做好,那故障管理闭环、视图管理、监控管理的模块也缺一不可。
一、数据采集
1、采集方式
数据采集方式一般分为Agent模式和非Agent模式;
Agent模式包括插件采集、脚本采集、日志采集、进程采集、APM探针等
非Agent模式包括通用协议采集、Web拨测、API接口等
2、数据类型
监控的数据类型有指标、日志、跟踪数据三种类型。
指标数据是数值型的监控项,主要是通过维度来做标识。
日志数据是字符型的数据,主要是从中找一些关键字信息来做监控。
跟踪型数据反馈的是跟踪链路一个数据流转的过程,观察过程中的耗时性能是否正常。
3、采集频率
采集频率分秒级、分钟级、随机三种类型。常用的采集频率为分钟级。
4、采集传输
采集传输可按传输发起分类,也可按传输链路分类。
按传输发起分类有主动采集Pull(拉)、被动接收Push(推)
按传输链路分类有直连模式、Proxy传输。
其中Proxy传输不仅能解决监控数据跨网传输的问题,还可以缓解监控节点数量过多导致出现的数据传输的瓶颈,用Proxy实现数据分流。
5、数据存储
对于监控系统来说,主要有以下三种存储供选择
① 关系型数据库
例如MySQL、MSSQL、DB2;典型监控系统代表:Zabbix、SCOM、Tivoli;
由于数据库本身的限制,很难搞定海量监控的场景,有性能瓶颈,只在传统监控系统常用
② 时序数据库
为监控这种场景设计的数据库,擅长于指标数据存储和计算;例如InfluxDB、OpenTSDB(基于Hbase)、Prometheus等;典型监控系统代表:TICK监控框架、 Open-falcon、Prometheus
③ 全文检索数据库
这类型数据库主要用于日志型存储,对数据检索非常友好,例如Elasticsearch。
二、数据检测
1. 数据加工
① 数据清洗
数据清洗比如日志数据的清洗,因为日志数据是非结构化的数据,信息密度较低,因此需要从中提取有用的数据。
② 数据计算
很多原始性能数据不能直接用来判断数据是否产生异常。比如采集的数据是磁盘总量和磁盘使用量,如果要检测磁盘使用率,就需要对现有指标进行一个简单的四则运算,才能得到磁盘使用率。
③ 数据丰富
数据丰富就是给数据打上一些tags标签,比如打上主机、机房的标签,方便进行聚合计算。
④ 指标派生
指标派生指的是通过已有的指标,通过计算得出新的指标。
2. 检测算法
有固定规则和机器学习算法。固定算法是较为常见的算法,静态阈值、同比环比、自定义规则,而机器学习主要有动态基线、毛刺检测、指标预测、多指标关联检测等算法。
无论是固定规则还是机器学习,都会有相应的判断规则,即常见的<>>=和and/or的组合判断等。
三、告警管理
1. 告警丰富
告警丰富是为了后续告警事件分析做准备,需要辅助信息去判断该怎么处理、分析和通知。
告警丰富一般是通过规则,联动CMDB、知识库、作业历史记录等数据源,实现告警字段、关联信息的丰富;通过人工打Tags也是一种丰富方式,不过实际场景下由于人工成本高导致难以落地。
2. 告警收敛
告警收敛有三种思路:抑制、屏蔽和聚合
① 抑制
即抑制同样的问题,避免重复告警。常见的抑制方案有防抖抑制、依赖抑制、时间抑制、组合条件抑制、高可用抑制等。
② 屏蔽
屏蔽可预知的情况,比如变更维护期、固定的周期任务这些已经知道会发生的事件,心里已经有预期。
③ 聚合
聚合是把类似或相同的告警进行合并,因为可能反馈的是同一个现象。比如业务访问量升高,那承载业务的主机的CPU、内存、磁盘IO、网络IO等各项性能都会飙升,这样把这些性能指标都聚合到一块,更加便于告警的分析处理。
3. 告警通知
① 通知到人
通过一些常规的通知渠道,能够触达到人。
这样在没有人盯屏的时候,可以通过微信、短信、邮件触发到工作人员。
② 通知到系统
一般通过API推送给第三方系统,便于进行后续的事件处理
另外还需要支持自定义渠道扩展(比如企业里有自己的IM系统,可以自行接入)
四、故障管理
告警事件必须要处理有闭环,否则监控是没有意义的。
最常见还是人工处理:值班、工单、故障升级等。
经验积累可以把人工处理的故障积累到知识库里面,用于后续故障处理的参考。
自动处理,通过提取一些特定告警的固化的处理流程,实现特定场景的故障自愈;比如磁盘空间告警时把一些无用日志清掉。
智能分析主要是通过故障的关联分析、定位、预测等AI算法,进一步提升故障定位和处理的效率;
1. 视图管理
视图管理也属于增值性功能,主要是满足人的心理述求,做到心中有底,面向的角色很多(领导、管理员、值班员等)。
大屏:面向领导,提供全局概览
拓扑:面向运维人员,提供告警关联关系和影响面视图
仪表盘:面向运维人员,提供自定义的关注指标的视图
报表:面向运维人员、领导,提供一些统计汇总报表信息,例如周报、日报等
检索:面向运维人员,用于故障分析场景下的各类数据检索
2. 监控管理
监控管理是企业监控落地过程中的最大挑战。前5个模块都是监控系统对外提供的服务功能,而监控管理才是面向监控系统自身的管理和控制,关注真正落地的过程的功能呈现。主要有以下几个方面:
配置:简单、批量、自动
覆盖率:监控水平的衡量指标
指标库:监控指标的规范
移动端:随时随地处理问题
权限:使用控制
审计:管理合规
API:运维数据最大的来源,用于数据消费
自监控:自身稳定的保障
为了实现上述监控六大基础能力模块,我们可以按如下架构设计我们的统一监控平台。
主要分三层,接入层,能力层,功能层。
接入层主要考虑各种数据的接入,除了本身Agent和插件的采集接入,还需要支持第三方监控源的数据接入,才能算一个完整的统一监控平台。
能力层主要考虑监控的基础通用能力,包含数据采集模块、数据存储模块、数据加工模块、数据检测模块、AI分析模块。
功能层需要贴近用户使用场景,主要有管理、展示两类功能,在建设的过程中可以不断丰富功能场景。
另外,考虑到数据的关联关系,为未来的数据分析打下基础,监控和CMDB也需要紧密联动,所有的监控对象都应该用CMDB进行管理,另外,还可以配置驱动监控为指导理念,实现监控的自动上下线,告警通知自动识别负责人等场景,简化监控的维护管理。
为了统一监控平台能够在企业更好的落地,我们需要配备对应的管理体系,其中最重要的是指标管理体系。
指标管理体系的核心理念:
监控的指标体系是以CMDB为骨架,以监控指标为经脉,将整个统一监控平台的数据有机整合起来。
贯穿指标的生命周期管理,辅以指标的管理规范,保障监控平台长久有序的运行。
从企业业务应用的视角出发,一般将企业监控的对象分为6层,也可以根据企业自己的情况进行调整:
基础设施层
硬件设备层
*** 作系统层
组件服务层
应用性能层
业务运营层
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)