数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。
(1)物理数据层。它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令 *** 作处理的位串、字符和字组成。
(2)概念数据层。它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。
(3)逻辑数据层。它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。
数据库不同层次之间的联系是通过映射进行转换的。数据库具有以下主要特点:
(1)实现数据共享。数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。
(2)减少数据的冗余度。同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。减少了大量重复数据,减少了数据冗余,维护了数据的一致性。
(3)数据的独立性。数据的独立性包括数据库中数据库的逻辑结构和应用程序相互独立,也包括数据物理结构的变化不影响数据的逻辑结构。
(4)数据实现集中控制。文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。利用数据库可对数据进行集中控制和管理,并通过数据模型表示各种数据的组织以及数据间的联系。
(5)数据一致性和可维护性,以确保数据的安全性和可靠性。主要包括:①安全性控制:以防止数据丢失、错误更新和越权使用;②完整性控制:保证数据的正确性、有效性和相容性;③并发控制:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用;④故障的发现和恢复:由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏
(1)为什么要分层
作为一名数据的规划者,我们肯定希望自己的数据能够有秩序地流转,数据的整个生命周期能够清晰明确被设计者和使用者感知到。直观来讲就是如图这般层次清晰、依赖关系直观。
但是,大多数情况下,我们完成的数据体系却是依赖复杂、层级混乱的。如下图,在不知不觉的情况下,我们可能会做出一套表依赖结构混乱,甚至出现循环依赖的数据体系。
因此,我们需要一套行之有效的数据组织和管理方法来让我们的数据体系更有序,这就是谈到的数据分层。数据分层并不能解决所有的数据问题,但是,数据分层却可以给我们带来如下的好处:
1)清晰数据结构: 每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解;
2)减少重复开发: 规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算;
3)统一数据口径: 通过数据分层,提供统一的数据出口,统一对外输出的数据口径;
4 )复杂问题简单化: 将一个复杂的任务分解成多个步骤来完成,每一层解决特定的问题。
为了满足前面提到好处,通常将数据模型分为三层:数据运营层( ODS )、数据仓库层(DW)和数据应用层(APP)。简单来讲,我们可以理解为:ODS层存放的是接入的原始数据,DW层是存放我们要重点设计的数据仓库中间层数据,APP是面向业务定制的应用数据。下面详细介绍这三层的设计。
(2)数据模型的分层
1)源数据层(ODS)
此层数据无任何更改,直接沿用外围系统数据结构和数据,不对外开放;为临时存储层,是接口数据的临时存储区域,为后一步的数据处理做准备。
2)数据仓库层(DW)
也称为细节层,DW 层的数据应该是一致的、准确的、干净的数据,即对源系统数据进行了清洗(去除了杂质)后的数据。
此层可以细分为三层:
明细层DWD(Data Warehouse Detail) :存储明细数据,此数据是最细粒度的事实数据。该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。
中间层DWM(Data WareHouse Middle) :存储中间数据,为数据统计需要创建的中间表数据,此数据一般是对多个维度的聚合数据,此层数据通常来源于DWD层的数据。
业务层DWS(Data WareHouse Service) :存储宽表数据,此层数据是针对某个业务领域的聚合数据,业务层的数据通常来源与此层,为什么叫宽表,主要是为了业务层的需要在这一层将业务相关的所有数据统一汇集起来进行存储,方便业务层获取。此层数据通常来源与DWD和DWM层的数据。
在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。
3)数据应用层(DA 或 APP)
前端应用直接读取的数据源;根据报表、专题分析的需求而计算生成的数据。
4)维表层(Dimension)
最后补充一个维表层,维表层主要包含两部分数据:
A)高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。
B)低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。
(3)问题扩展
数据仓库系统架构
上图系统各部分的执行流程是:
1)确定分析所依赖的源数据。
2)通过ETL将源数据采集到数据仓库。
3)数据按照数据仓库提供的主题结构进行存储。
4)根据各部门的业务分析要求创建数据集市(数据仓库的子集)。
5)决策分析、报表等应用系统从数据仓库查询数据、分析数据。
6)用户通过应用系统查询分析结果、报表。
(4)结合项目中使用
电商网站的数据体系设计,这里针对用户访问日志这一部分数据进行举例说明:
在ODS层中,由于各端的开发团队不同或者各种其它问题,用户的访问日志被分成了好几张表上报到了我们的ODS层。
为了方便大家的使用,我们在DWD层做了一张用户访问行为天表,在这里,我们将PC网页、H5、小程序和原生APP访问日志汇聚到一张表里面,统一字段名,提升数据质量,这样就有了一张可供大家方便使用的明细表了。
在DWM层,我们会从DWD层中选取业务关注的核心维度来做聚合 *** 作,比如只保留人、商品、设备和页面区域维度。类似的,我们这样做很多个DWM的中间表。
然后在DWS层,我们将一个人在整个网站中的行为数据放到一张表中,这就是我们的宽表了,有了这张表,就可以快速满足大部分的通用型业务需求了。
最后,在APP应用层,根据需求从DWS层的一张或者多张表取出数据拼接成一张应用表即可。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)