传统数据和大数据的区别表现在:数据规模不同、内容不同、处理方式不同。
1、数据规模不同
传统数据技术主要是利用现有存在关系性数据库中的数据,对这些数据进行分析、处理,找到一些关联,并利用数据关联性创造价值。这些数据的规模相对较小,可以利用数据库的分析工具处理。
大数据的数据量非常大,不可能利用数据库分析工具分析。
2、内容不同
传统数据主要在关系性数据库中分析。
大数据可以处理图像、声音、文件等非结构化数据。
3、处理方式不同
大数据处理过程中,比传统数据增加了一个过程Stream。就是在写入数据的时候,在数据上打一个标签,之后在利用大数据的时候,根据标签抽取数据。
对于数据库研究人员和从业人员而言,从数据库(DB)到大数据(BD)的转变可以用“池塘捕鱼”到“大海捕鱼”做类比。“池塘捕鱼”代表着传统数据库时代的数据管理方式,而 “大海捕鱼”则是大数据时代的数据管理方式。这些差异主要体现在如下几个方面:
1、数据规模
数据库和大数据最明显的区别就是规模。数据库规模相对较小,即便是先前认为比较大的数据库,比如 VLDB(Very Large Database),和大数据XLDB(Extremely Large Database)比起来还是差很远。
数据库的处理对象一般以 MB 为基本单位,而大数据则是GB、TB、PB 为基本处理单位。
2、数据类型
传统数据库数据种类单一,往往仅仅有一种或少数几种,这些数据又以结构化数据为主。而大数据的种类数以亿计,而这些数据既包括结构化、半结构化以及非结构化的数据,重要的是半结构化和非结构化数据所占份额越来越大。
3.模式(Schema)和数据的关系
传统的数据库都是先有模式,然后才会产生数据。而大数据很多情况下难以预先确定模式,模式只有在数据出现之后才能确定,且模式随着数据量的增长处于不断的演变之中。
4.处理对象
传统数据库数据是其处理的对象。而大数据的处理对象除了是数据以外,还能通过这些数据去预测其他数据出现的可能性,将收集到的数据作为一种资源来辅助解决其他诸多领域的问题。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)