如何爬虫天猫店铺数据python

如何爬虫天猫店铺数据python,第1张

本编博客是关于爬取天猫店铺中指定店铺的所有商品基础信息爬虫,爬虫运行只需要输入相应店铺的域名名称即可,信息将以csv表格的形式保存,可以单店爬取也可以增加一个循环进行同时爬取。

源码展示

首先还是完整代码展示,后面会分解每个函数的意义。

# -*- coding: utf-8 -*-

import requests

import json

import csv

import random

import re

from datetime import datetime

import time

class TM_producs(object):

def __init__(self,storename):

self.storename = storename

self.url = ''.format(storename)

self.headers = {

"user-agent":"Mozilla/5.0 (iPhoneCPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 "

"(KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1"

}

datenum = datetime.now().strftime('%Y%m%d%H%M')

self.filename = '{}_{}.csv'.format(self.storename, datenum)

self.get_file()

def get_file(self):

'''创建一个含有标题的表格'''

title = ['item_id','price','quantity','sold','title','totalSoldQuantity','url','img']

with open(self.filename,'w',newline='') as f:

writer = csv.DictWriter(f,fieldnames=title)

writer.writeheader()

return

def get_totalpage(self):

'''提取总页码数'''

num = random.randint(83739921,87739530)

endurl = '/shop/shop_auction_search.do?sort=s&p=1&page_size=12&from=h5&ajson=1&_tm_source=tmallsearch&callback=jsonp_{}'

url = self.url + endurl.format(num)

html = requests.get(url,headers=self.headers).text

infos = re.findall('\(({.*})\)',html)[0]

infos = json.loads(infos)

totalpage = infos.get('total_page')

return int(totalpage)

def get_products(self,page):

'''提取单页商品列表'''

num = random.randint(83739921, 87739530)

endurl = '/shop/shop_auction_search.do?sort=s&p={}&page_size=12&from=h5&ajson=1&_tm_source=tmallsearch&callback=jsonp_{}'

url = self.url + endurl.format(page,num)

html = requests.get(url, headers=self.headers).text

infos = re.findall('\(({.*})\)', html)[0]

infos = json.loads(infos)

products = infos.get('items')

title = ['item_id', 'price', 'quantity', 'sold', 'title', 'totalSoldQuantity', 'url', 'img']

with open(self.filename, 'a', newline='') as f:

writer = csv.DictWriter(f, fieldnames=title)

writer.writerows(products)

def main(self):

'''循环爬取所有页面宝贝'''

total_page = self.get_totalpage()

for i in range(1,total_page+1):

self.get_products(i)

print('总计{}页商品,已经提取第{}页'.format(total_page,i))

time.sleep(1+random.random())

if __name__ == '__main__':

storename = 'uniqlo'

tm = TM_producs(storename)

tm.main()

上面代码是选择了优衣库作为测试店铺,直接输入优衣库店铺的域名中关键词即可,最终表格会按照店铺名称和时间名词。

代码解读

导入库说明

requests 库不用多数,爬取网页的主要库

json 库是用来解析 json 格式的数据的,也就是 Python 中的字典格式

csv 库是用来创建 csv 表格和保存信息的

random 库是用来生成一个随机数的,这个代码中用到了两次,第一次是生成一个随机数据去获取最新的网页信息而不是缓存信息,第二次是随机一个时间,来减缓爬虫速度

re 库是正则,主要用来提取信息

datetime 和 time 都是时间库,前者一般用来生成当前时间字符串,后者本爬虫使用设置延迟时间

爬虫思路

首先通过分析手机端天猫店铺所有商品的网页,可以发现每次下滑一页都有一个 js 被加载,这个 js 的规律可以总结一下;

通过分析可以发现每次请求 js 都可以得到一个关键信息,那就是 total_page 这个参数,这也一想就能猜到,就是当前店铺的总页码数,所以可以先取得这个数字,然后使用循环爬取全店商品;

每一页有24个商品,而请求得到的是一个类似于 json 格式的网页信息,但是并非是直接的 json,所以可以用正则表达式提取符合 json 格式的部分留用;

将每一页的信息保存到 csv 表格中,可以直接使用 csv 库的字典存储方式,非常方便;

得到了单页的信息,也得到了总页码数,只需要一个循环就可以爬取全店的商品了。

构造爬虫类

def __init__(self,storename):

   self.storename = storename

   self.url = '.format(storename)

   self.headers = {

       "user-agent":"Mozilla/5.0 (iPhoneCPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 "

                    "(KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1"

   }

   datenum = datetime.now().strftime('%Y%m%d%H%M')

   self.filename = '{}_{}.csv'.format(self.storename, datenum)

   self.get_file()

上面代码依次完成以下 *** 作:

首先整个爬虫是写成了一个类,在初始化类的时候需要传递一个参数,这个参数就是店铺的名称。

然后构造出店铺的所有商品页面的前半部分,这部分都是不会变的

接着设置一个请求头

按照当前时间生成一个以时间为依据的字符串,用来给文件命名,然后赋值给文件名称,确定保存文件的名称

最后一句是在类生成的时候就运行这个函数,及生成一个带有标题的表格,后面会说道这个函数的具体含义

大的原则上,在网上能公开访问的可见的数据资料都是有办法爬取到的,天猫和京东上是有部分的订单成交数据的,所以这些也是可以爬取的。某宝中的楚江数据,数据采集工作可以代写爬虫,也可以直接让他们爬取数据,视频,图片,文字都可以。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9968106.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-03
下一篇 2023-05-03

发表评论

登录后才能评论

评论列表(0条)

保存