逐渐变慢
突然变慢
不定时变慢
第一种情况 逐渐变慢 要建立一个长期的监控机制 比如 写个shell脚本每天的忙时(通常 ~ etc )定时收集os neork db的信息 每个星期出report对收集到的信息进行分析 这些数据的积累 可以决定后期的优化决策 并且可以是DBA说服manager采用自己决策的重要数据 DBA的价值 就在每个星期的report中体现
第二种情况 突然变慢 也是最容易解决的 先从业务的角度看是DB的使用跟以前有何不同 然后做进一步判断 硬件/网络故障通常也会引起DB性能的突然下降
第一步: 察看DB/OS/NEORK的系统log 排除硬件/网络问题
第二步 察看数据库的等待事件 根据等待事件来判断可能出问题的环节 如果 没有等待事件 可以排除数据库的问题 如果有等待时间 根据不同的等待事件 来找引起这些事件的根源
比如latch free等跟SQL parse有关系的等待事件 OS的表现是CPU 的占用率高
db file scattered read等跟SQL disk read有关系的等待时间 OS的表现是iostat可以看到磁盘读写量增加
第三步: 察看os的信息 CPU/IO/MEMORY等
a Cpu 的占用率
CPU占用率与数据库性能不成反比 CPU占用率高 不能说明数据库性能慢 通常情况 一个优化很好 而且业务量确实很大的数据库 CPU的占用率都会高 而且会平均分布在每个进程上 反过来 CPU的占用率都会高也不代表数据库性能就好 要结合数据库的等待事件来判断CPU占用率高是否合理
如果某个进程的cpu占用高 肯定是这个进程有问题 如果 不是oracle的进程 可以让application察看是否程序有死循环等漏洞 如果 是oracle的进程 可以根据pid查找oracle数据字典看看这个进程的发起程序 正在执行的sql语句 以及等待事件 然后 不同情况使用不同的方法来解决
b IO
排除硬件的IO问题 数据库突然变慢 一般来说 都是一个或几个SQL语句引起的
如果IO很频繁 可以通过优化disk reads高的TOP SQL来解决 当然这也是解决IO问题的最笨也是最有效的办法
OS以及存储的配置也是影响IO的一个重要的原因
比如 最常见的HP unix下异步IO的问题 如果DBA GROUP没有MLOCK的权限 ORACLE是不使用AIO的 偏偏OS与DB的两方的admin如果配合不够好地话 这个配置就很容易给漏掉了
c Memory
第二种情况与memory的关系比较小 只要SGA区配置合理没有变化 一般来说 只要不是Application Memory leak 不会引起突然变慢的现象
第三种情况 不定时变慢 是最难解决的 现场出现的问题原因也是五花八门千奇百怪 最重要的是 出现慢的现象时 以最快的速度抓取到最多的信息以供分析 先写好抓取数据的shell 脚本 并在现象发生时及时按下回车键
一个例子
数据库突然变慢
背景: 一个新应用上线后 数据库突然变慢
第一步 调查新应用
据开发人员讲新应用访问的都是新建立的表 表的数据量很小 没有复杂的SQL查询
查询 v$sqlarea 分别按照disk_reads / buffer_gets / executions 排序 TOP SQL 中没有新应用的SQL 排除新应用数据库访问照成的性能问题
第二步 察看数据库log/ OS log
数据库log中可以看到大量的ORA 错误 以及大量的dump文件 分析dump文件(时间久了 没有dump文件可参考 具体细节没法描述下来 ) 发现是新应用通过dblink访问remote DB时生成的dump文件 应用开发人说没法修改 Oracle也没有相应的patch解决
OS log中没有错误信息
第三步 察看statspack report
从wait events中看到 Top event是 buffer busy waits db file parallel write 等于IO相关的等待事件
从buffer busy waits 的统计信息来看 是等待data block
还有些physical reads等信息与从前比没有太多的异常
Tablespace 的IO reads/writes也没有异常 但是wait明显增加
初步确定是IO问题
第四步 察看OS的信息
top 命令(输出为实验室数据 仅作格式参考)
load averages: : :
processes: sleeping zombie stopped on cpu
CPU states: % idle % user % kernel % iowait % swap
Memory: M real M free M swap in use M swap free
PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU MAND
a K K cpu/ : % top
mpgj M K sleep : % view_server
当时现场数据显示 iowait 值与以前相比大很多 没有异常进程
sar –d (输出为实验室数据 仅作格式参考)
SunOS sc Generic_ sun u / /
: : device %busy avque r+w/s blks/s avwait avserv
sd
sd a
sd b
sd c
sd g
当时现场数据显示 放数据文件的设备 avwait avque blks/s值偏大
第五步 察看数据库的等待事件
一个大业务量的数据库如果性能不好的话 一般来说都会有大量的等待事件 上百个等待事件很常见 我通常会按照EVENT进行group
Select count(*) event from v$session_wait where event not in ( *** on timer pmon timer rdbms ipc message SQL*Net message from client ) group by event order by desc
输出结果显示最多的等待事件是buffer busy waits
进一步分析 找出等待的原因
Select count(*) p p p from v$session_wait where event = buffer busy waits group by p p p
在buffer busy waits等待事件中
P = file#
P = block#
P = id ( 此id对应为等待的原因)
按照p p p group是为了明确buffer busy waits的等待集中在哪些对象上
Metalink对buffer busy waits等待事件的描述有如下一段话
If P shows that the buffer busy wait is waiting for a block read to plete then the blocking session is likely to be waiting on an IO wait (eg: db file sequential read or db file scattered read for the same file# and block#
输出结果显示 等待分布在多个不同的对象上 等待原因为 waiting for a block read to plete 进一步分析为IO的问题
如果 buffer busy waits等待集中在某个对象上 说明有hot block 通过重新rebuild这个对象增加freelist来解决 RAC环境增加freelist group
通过以下SQL可以找到具体的object
Select owner segment_name segment_type from dba_extents where file_id=P and P beeen block_id and block_id+blocks
P P 是上面v$session_wait查出的具体的值
第六步 明确原因 找出解决步骤
分析
磁盘的IO流量增加
磁盘的IO等待增加
DB的IO流量没有增加
DB的IO等待增加
由 可以推出 有数据库以外的IO访问磁盘
察看磁盘配置 该VG只存放了数据库数据文件和数据库系统文件 排除数据文件 产生IO的是数据库系统文件
数据库系统文件一般来说不会产生IO 有IO读写的地方只有log和dump文件
结论 ora 产生的大量core dump文件堵塞IO
解决办法
消除ora (应用不改的情况下 无法解决)
把dump目录指向别的VG
让oracle尽量少的去写core dump文件
background_core_dump = partial
lishixinzhi/Article/program/Oracle/201311/18969SQL提高查询效率
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
8.应尽量避免在 where 子句中对字段进行表达式 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数 *** 作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(...)
13.很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标 *** 作的数据超过1万行,那么就应该考虑改写。
26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
29.尽量避免大事务 *** 作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理
1、避免将字段设为“允许为空”
2、数据表设计要规范
3、深入分析数据 *** 作所要对数据库进行的 *** 作
4、尽量不要使用临时表
5、多多使用事务
6、尽量不要使用游标
7、避免死锁
8、要注意读写锁的使用
9、不要打开大的数据集
10、不要使用服务器端游标
11、在程序编码时使用大数据量的数据库
12、不要给“性别”列创建索引
13、注意超时问题
14、不要使用Select *
15、在细节表中插入纪录时,不要在主表执行Select MAX(ID)
16、尽量不要使用TEXT数据类型
17、使用参数查询
18、不要使用Insert导入大批的数据
19、学会分析查询
20、使用参照完整性
21、用INNER JOIN 和LEFT JOIN代替Where
提高SQL查询效率(要点与技巧):
· 技巧一:
问题类型:ACCESS数据库字段中含有日文片假名或其它不明字符时查询会提示内存溢出。
解决方法:修改查询语句
sql="select * from tablename where column like '%"&word&"%'"
改为
sql="select * from tablename"
rs.filter = " column like '%"&word&"%'"
===========================================================
技巧二:
问题类型:如何用简易的办法实现类似百度的多关键词查询(多关键词用空格或其它符号间隔)。
解决方法:
'//用空格分割查询字符串
ck=split(word," ")
'//得到分割后的数量
sck=UBound(ck)
sql="select * tablename where"
在一个字段中查询
For i = 0 To sck
SQL = SQL &tempJoinWord &"(" &_
"column like '"&ck(i)&"%')"
tempJoinWord = " and "
Next
在二个字段中同时查询
For i = 0 To sck
SQL = SQL &tempJoinWord &"(" &_
"column like '"&ck(i)&"%' or " &_
"column1 like '"&ck(i)&"%')"
tempJoinWord = " and "
Next
===========================================================
技巧三:大大提高查询效率的几种技巧
1. 尽量不要使用 or,使用or会引起全表扫描,将大大降低查询效率。
2. 经过实践验证,charindex()并不比前面加%的like更能提高查询效率,并且charindex()会使索引失去作用(指sqlserver数据库)
3. column like '%"&word&"%' 会使索引不起作用
column like '"&word&"%' 会使索引起作用(去掉前面的%符号)
(指sqlserver数据库)
4. '%"&word&"%' 与'"&word&"%' 在查询时的区别:
比如你的字段内容为 一个容易受伤的女人
'%"&word&"%' :会通配所有字符串,不论查“受伤”还是查“一个”,都会显示结果。
'"&word&"%' :只通配前面的字符串,例如查“受伤”是没有结果的,只有查“一个”,才会显示结果。
5. 字段提取要按照“需多少、提多少”的原则,避免“select *”,尽量使用“select 字段1,字段2,字段3........”。实践证明:每少提取一个字段,数据的提取速度就会有相应的提升。提升的速度还要看您舍弃的字段的大小来判断。
6. order by按聚集索引列排序效率最高。一个sqlserver数据表只能建立一个聚集索引,一般默认为ID,也可以改为其它的字段。
7. 为你的表建立适当的索引,建立索引可以使你的查询速度提高几十几百倍。(指sqlserver数据库)
· 以下是建立索引与不建立索引的一个查询效率分析:
Sqlserver索引与查询效率分析。
表 News
字段
Id:自动编号
Title:文章标题
Author:作者
Content:内容
Star:优先级
Addtime:时间
记录:100万条
测试机器:P4 2.8/1G内存/IDE硬盘
=======================================================
方案1:
主键Id,默认为聚集索引,不建立其它非聚集索引
select * from News where Title like '%"&word&"%' or Author like '%"&word&"%' order by Id desc
从字段Title和Author中模糊检索,按Id排序
查询时间:50秒
=======================================================
方案2:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%' or Author like '"&word&"%' order by Id desc
从字段Title和Author中模糊检索,按Id排序
查询时间:2 - 2.5秒
=======================================================
方案3:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%' or Author like '"&word&"%' order by Star desc
从字段Title和Author中模糊检索,按Star排序
查询时间:2 秒
=======================================================
方案4:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%' or Author like '"&word&"%'
从字段Title和Author中模糊检索,不排序
查询时间:1.8 - 2 秒
=======================================================
方案5:
主键Id,默认为聚集索引
在Title、Author、Star上建立非聚集索引
select * from News where Title like '"&word&"%'
或
select * from News where Author like '"&word&"%'
从字段Title 或 Author中检索,不排序
查询时间:1秒
· 如何提高SQL语言的查询效率?
问:请问我如何才能提高SQL语言的查询效率呢?
答:这得从头说起:
由于SQL是面向结果而不是面向过程的查询语言,所以一般支持SQL语言的大型关系型数据库都使用一个基于查询成本的优化器,为即时查询提供一个最佳的执行策略。对于优化器,输入是一条查询语句,输出是一个执行策略。
一条SQL查询语句可以有多种执行策略,优化器将估计出全部执行方法中所需时间最少的所谓成本最低的那一种方法。所有优化都是基于用记所使用的查询语句中的where子句,优化器对where子句中的优化主要用搜索参数(Serach Argument)。
搜索参数的核心思想就是数据库使用表中字段的索引来查询数据,而不必直接查询记录中的数据。
带有 =、<、<=、>、>= 等 *** 作符的条件语句可以直接使用索引,如下列是搜索参数:
emp_id = "10001" 或 salary >3000 或 a =1 and c = 7
而下列则不是搜索参数:
salary = emp_salary 或 dep_id != 10 或 salary * 12 >= 3000 或 a=1 or c=7
应当尽可能提供一些冗余的搜索参数,使优化器有更多的选择余地。请看以下3种方法:
第一种方法:
select employee.emp_name,department.dep_name from department,employee where (employee.dep_id = department.dep_id) and (department.dep_code="01") and (employee.dep_code="01")
它的搜索分析结果如下:
Estimate 2 I/O operations
Scan department using primary key
for rows where dep_code equals "01"
Estimate getting here 1 times
Scan employee sequentially
Estimate getting here 5 times
第二种方法:
select employee.emp_name,department.dep_name from department,employee where (employee.dep_id = department.dep_id) and (department.dep_code="01")
它的搜索分析结果如下:
Estimate 2 I/O operations
Scan department using primary key
for rows where dep_code equals "01"
Estimate getting here 1 times
Scan employee sequentially
Estimate getting here 5 times
第一种方法与第二种运行效率相同,但第一种方法最好,因为它为优化器提供了更多的选择机会。
第三种方法:
select employee.emp_name,department.dep_name from department,employee where (employee.dep_id = department.dep_id) and (employee.dep_code="01")
这种方法最不好,因为它无法使用索引,也就是无法优化……
使用SQL语句时应注意以下几点:
1、避免使用不兼容的数据类型。例如,Float和Integer,Char和Varchar,Binary和Long Binary不兼容的。数据类型的不兼容可能使优化器无法执行一些本可以进行的优化 *** 作。例如:
select emp_name form employee where salary >3000
在此语句中若salary是Float类型的,则优化器很难对其进行优化,因为3000是个整数,我们应在编程时使用3000.0而不要等运行时让DBMS进行转化。
2、尽量不要使用表达式,因它在编绎时是无法得到的,所以SQL只能使用其平均密度来估计将要命中的记录数。
3、避免对搜索参数使用其他的数学 *** 作符。如:
select emp_name from employee where salary * 12 >3000
应改为:
select emp_name from employee where salary >250
4、避免使用 != 或 <>等这样的 *** 作符,因为它会使系统无法使用索引,而只能直接搜索表中的数据。
· ORACAL中的应用
一个1600万数据表--短信上行表TBL_SMS_MO
结构:
CREATE TABLE TBL_SMS_MO
(
SMS_ID NUMBER,
MO_ID VARCHAR2(50),
MOBILE VARCHAR2(11),
SPNUMBER VARCHAR2(20),
MESSAGE VARCHAR2(150),
TRADE_CODE VARCHAR2(20),
LINK_ID VARCHAR2(50),
GATEWAY_ID NUMBER,
GATEWAY_PORT NUMBER,
MO_TIME DATE DEFAULT SYSDATE
)
CREATE INDEX IDX_MO_DATE ON TBL_SMS_MO (MO_TIME)
PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE
(
INITIAL 1M
NEXT 1M
MINEXTENTS 1
MAXEXTENTS UNLIMITED
PCTINCREASE 0
)
CREATE INDEX IDX_MO_MOBILE ON TBL_SMS_MO (MOBILE)
PCTFREE 10
INITRANS 2
MAXTRANS 255
STORAGE
(
INITIAL 64K
NEXT 1M
MINEXTENTS 1
MAXEXTENTS UNLIMITED
PCTINCREASE 0
)
问题:从表中查询某时间段内某手机发送的短消息,如下SQL语句:
SELECT MOBILE,MESSAGE,TRADE_CODE,MO_TIME
FROM TBL_SMS_MO
WHERE MOBILE='130XXXXXXXX'
AND MO_TIME BETWEEN TO_DATE('2006-04-01','YYYY-MM-DD HH24:MI:SS') AND TO_DATE('2006-04-07','YYYY-MM-DD HH24:MI:SS')
ORDER BY MO_TIME DESC
返回结果大约需要10分钟,应用于网页查询,简直难以忍受。
分析:
在PL/SQL Developer,点击“Explain Plan”按钮(或F5键),对SQL进行分析,发现缺省使用的索引是IDX_MO_DATE。问题可能出在这里,因为相对于总数量1600万数据来说,都mobile的数据是很少的,如果使用IDX_MO_MOBILE比较容易锁定数据。
如下优化:
SELECT /*+ index(TBL_SMS_MO IDX_MO_MOBILE) */ MOBILE,MESSAGE,TRADE_CODE,MO_TIME
FROM TBL_SMS_MO
WHERE MOBILE='130XXXXXXXX'
AND MO_TIME BETWEEN TO_DATE('2006-04-01','YYYY-MM-DD HH24:MI:SS') AND TO_DATE('2006-04-07','YYYY-MM-DD HH24:MI:SS')
ORDER BY MO_TIME DESC
测试:
按F8运行这个SQL,哇~... ... 2.360s,这就是差别。
http://www.cnblogs.com/ShaYeBlog/archive/2013/07/31/3227244.html
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)