怎么进行mysql数据库优化?

怎么进行mysql数据库优化?,第1张

有八个方面可以对mysql进行优化:

1、选取最适用的字段属性

MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能,我们可以将表中字段的宽度设得尽可能小。

2. 使用连接(JOIN)来代替子查询(Sub-Queries)

MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。

3、使用联合(UNION)来代替手动创建的临时表

MySQL从4.0的版本开始支持union查询,它可以把需要使用临时表的两条或更多的select查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。

4、事务

尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库 *** 作都可以只用一条或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整个语句块的 *** 作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外状况,造成第二个表中的 *** 作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块中每条语句都 *** 作成功,要么都失败

5、锁定表

尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。

6、使用外键

锁定表的方法可以维护数据的完整性,但是它却不能保证数据的关联性。这个时候我们就可以使用外键。

7、使用索引

索引是提高数据库性能的常用方法,它可以令数据库服务器以比没有索引快得多的速度检索特定的行,尤其是在查询语句当中包含有MAX(),MIN()和ORDERBY这些命令的时候,性能提高更为明显。

8、优化的查询语句

绝大多数情况下,使用索引可以提高查询的速度,但如果SQL语句使用不恰当的话,索引将无法发挥它应有的作用。

1.总的老说,优化方案中只有两种,一种是给查询的字段加组合索引。另一种是给在用户和数据库中增加缓存

2.添加索引方案:面对1~2千的并发是没有压力的,在往上则限制的瓶颈就是数据库最大连接数了,在上面中我用show global status like 'Max_used_connections’查看数据库可以知道数据库最大响应连接数是5700多,超过这个数tomcat直接报错连接被拒绝或者连接已经失效

3.缓存方案:在上面的测试可以知道,要是我们事先把数据库的千万条数据同步到redis缓存中,瓶颈就是我们的设备硬件性能了,假如我们的主机有几百个核心CPU,就算是千万级的并发下也可以完全无压力,带个用户很好的。

4.索引+缓存方案:缓存事先没有要查询的数据,在一万的并发下测试数据库毫无压力,程序先通过查缓存再查数据库大大减轻了数据库的压力,即使缓存不命中在一万的并发下也能正常访问,在10万并发下数据库依然没压力,但是redis服务器设置最大连接数300去处理10万的线程,4核CPU处理不过来,很多redis连接不了。我用show global status like 'Max_used_connections'查看数据库发现最大响应连接数是388,这么低所以数据库是不会挂掉的。雷达下载更专业。

5.使用场景:a.几百或者2000以下并发直接加上组合索引就可以了。b.不想加索引又高并发的情况下可以先事先把数据放到缓存中,硬件设备支持下可解决百万级并发。c.加索引且缓存事先没有数据,在硬件设备支持下可解决百万级并发问题。d.不加索引且缓存事先没有数据,不可取,要80多秒才能得到结果,用户体验极差。

6.原理:其实使用了redis的话为什么数据库不会崩溃是因为redis最大连接数为300,这样数据库最大同时连接数也是300多,所以不会挂掉,至于redis为什么设置为300是因为设置的太高就会报错(连接被拒绝)或者等待超时(就算设置等待超时的时间很长也会报这个错)。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9981691.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-04
下一篇 2023-05-04

发表评论

登录后才能评论

评论列表(0条)

保存