1.基础地理数据库建库原则
(1)满足专题研究的特殊需求。河南省1:500000~1∶100000数字地理底图的制作,是根据《河南省国土资源遥感综合调查与信息化工程总体设计书》的要求,应用地理信息系统技术,为其提供数字式基础地理控制信息。基础地理控制信息用于专题信息的定位,正确表现其与周围地理环境的关系的分布规律,综合地反映自然地理形态和社会经济概况。同时,通过非空间数据(属性数据)录入,实现空间数据与非空间数据的对应联结。
(2)以国家基础地理信息中心“数字地图数据库”为基础,根据项目的需要,根据现时资料进行了部分内容的补充、修编。
2.地理要素选取标准
(1)水系
图上所有双线河及河心岛,单线河5级以上基本全部选取。河网密度大的在保证体现其河系基本形态的原则下,进行了删减,选取图上面积大于10 mm2的湖泊和水库。
(2)行政区划
选取县级以上行政界线。
(3)居民地
县级以上政府所在地全部选取。地级以上政府所在地按真型居民地范围选取。镇级居民地按经差30′、纬差20′范围内3~5个居民地的标准选取。在部分人口稀疏区选取了部分村级居民地。
(4)交通
铁路及高等级公路全部选取,并按高速公路、国道、省道进行分类;其他公路按照与居民地相连通的原则选取。根据现势资料对近年来新建高速公路进行补充。由于数据及比例尺的不同,故补充信息的精度低于1∶250000比例尺的精度。
(5)地貌
地形等高线高差平原地区为50 m、100 m;低山区为300 m、500 m;中山区为1000 m、1500 m、2000 m。主要山峰及高程,按经差30′、纬差20′范围内选取3个山峰或高程点的标准。
3.地理要素分类代码
1∶500000数字地理底图要素分类代码采用中华人民共和国国家标准《国土基础信息数据分类与代码》(GB/T13923-92)。国土基础信息数据分为九个大类,并依次细分为小类,一级和二级。分类代码由六位数字码组成,其结构如下:
遥感·河南省国土资源综合调查与评价
大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在1∶500000数字地理底图数据库中没有用到识别位,故用前五位数字表示要素分类代码。
(1)1:500000数字地理底图数据所用到的大类码意义
2=水系;3=居民地;4=交通;6=境界;7=地形。
(2)行政区划代码
1∶500000数字地理底图数据库中县级以上行政区划代码采用中华人民共和国国家标准《中华人民共和国行政区划代码》(GB/T2260-1995)。属性表中数据项为“行政区划代码”。县级以上行政区划代码结构如下:
a.采用六位数字代码。按层次分别表示我国各省(自治区、直辖市)、地区(市、州、盟)、县(区、市、旗)的名称。
b.行政区划代码从左至右的含义。第一、二位表示省(自治区、直辖市);第三、四位表示省辖市(市、州、盟及国家直辖市所属市辖区和县的总码)其中01~20、51~70表示省辖市;21~50表示地区(州、盟);第五、六位表示县(市辖区、地辖市、省直辖县级市、镇),其中01~18表示市辖区或地辖市,21~80表示县(镇),81~99表示省直辖县级市。
4.投影、坐标系、高程系
数字地理底图数据库采用高斯-克吕格(等角横切圆柱)投影,中央经线为113°30 ′00″,坐标系采用1954年北京坐标系,高程系采用1956年黄海高程系。
5.地理要素分层
河南省基础地理数字地图图层文件分类详见表5.3.1。
表5.3.1 河南省基础地理数字地图图层文件分类表
6.河南省基础地理数据层描述
(1)基本信息图层名(L2HN01J)
数据描述 表5.3.2描述30′×20 ′的经纬网线及其经纬度值。
表5.3.2 基本信息属性表
数据项代码及其描述95202=经线;95203=纬线。
(2)水系信息图层名
a.水系信息图层名(L2HN02S)
数据描述以多边形表示的水系要素,如河流、湖泊、水库、水塘等。
数据项代码及其描述 22012=常年双线河;22010=运河;23000=湖泊;24010=水库;24150=水塘;25050=水中岛。
河流、湖泊、水库属性见表5.3.3。
表5.3.3 河流、湖泊、水库属性表
b.水系信息图层名(★2HN022H、L2HN02CH)
数据描述 以线表示的水系要素,包括河流、湖泊、水库、运河等。
数据项代码及其描述21011=常年单线河;21012=常年双线河岸线;21021=常年时令河;22010=运河岸线;23000=湖泊岸线;24010=水库岸线;24150=池塘岸线。
河流、海岸线属性见表5.3.4。
表5.3.4 河流、海岸线属性表
(3)交通信息图层名
a.交通信息图层名(L2HN03T)
数据描述 表5.3.5描述主要铁路和铁路线起止点城市名。
数据项代码及其描述 41000=铁路;41010=电气化铁路;41011=复线铁路;41012=单线铁路;41013=建筑中铁路;41030=窄轨铁路。
铁路图层属性见表5.3.5。
表5.3.5 铁路图层属性表
b.交通信息图层名(L2HN03G、L2HN03GD、L2HN03SD)
数据描述 表5.3.6描述高速公路、国道、省道及起止点城市名称等。
数据项代码及其描述42010=高速公路;42011=建筑中高速公路;41020=一级公路(国道);42070=主要公路(省道);42080=一般公路;42110=大路;42130=小路。
公路图层属性见表5.3.6。
表5.3.6 公路图层属性表
(4)居民地图层名
a.居民地图层名(L2HN04X)
数据描述 表5.3.7描述乡镇级以上居民地及其行政区划代码名称等。
数据项代码及其描述31020=省政府驻地;31030=地级市政府驻地;31060=县政府驻地;31080=镇政府驻地;31090=乡政府驻地。
镇级以上居民地属性见表5.3.7。
表5.3.7 镇级以上居民地属性表
b.居民地图层名(L2HN04D)
数据描述 表5.3.8描述地级以上真型居民地及其类别和名称。
地区级居民属性见表5.3.8。
表5.3.8 地区级居民地属性表
(5)政区图层名
a.政区图层名(L2HN05X、L2HN05D、L2HN05X)
数据描述 表5.3.9描述省级行政界、地级行政界、县级行政界、地区界等。
表5.3.9 境界属性表
b.政区图层名(L2HN05DQ、L2HN05XD)
数据描述 表5.3.10描述地级行政区、县级行政区。
表5.3.10 行政区属性表
(6)地貌图层名
a.地貌图层名(L2HN06D)
数据描述 表5.3.11描述等高线及其高程值。
数据项代码及其描述 71000=等高线。
表5.3.11 地形等高线属性表
b.地貌图层名(L2HN06G)
数据描述 表5.3.12描述主要山峰的名称及高程值,主要高程点的高程值。
数据项代码及其描述 72000=山峰。
表5.3.12 山峰高程点属性表
7.工作流程
工作流程包括预处理、图形数字化、图形编辑、拓扑关系建立、属性输入、投影变换、输出图形等步骤,各步骤间均经过检查修改等过程。其工艺流程见图5.3.1。
图5.3.1 河南省基础地理数字地图制作工艺流程图
1.数字地质图
传统的纸质模拟地图是根据地图模型(map model),按照一定的数学法则、符号、制图综合原理和比例,将地球空间实体和现象的形状、大小、相互位置、基本属性等表示在二维平面上。“数字地图”,简单地说,就是存储在计算机中数字化了的地图。一般来讲,数字地图是以地图数据库为基础,以数字形式存贮于计算机外存储器上,并能在电子屏幕上实时显示的可视地图,又称“屏幕地图”或“瞬时地图”。
(1)地质图
“地质图”乃是一切地质工作中的基本图件,用规定的符号、不同的颜色、描绘一地区的地质现象,反映沉积岩、岩浆岩、变质岩、各类矿产、各种型式的地质构造线等,反映它们形成的时代、分布和相互关系,以三维空间的立体形状表示在二维空间的平面上。金泽兰等在《地质图编汇法》中,提出地质图是一种将出露在地表的地质构造现象按比例投影到平面图(通常带有地形等高线,即地形图)上,并用规定的符号、色谱、花纹予以表示的图件。它是为特定目的服务的、有选择性地表示地质对象的时间和空间分布的符号化表现形式。在地质图上表示的地质对象即可以根据地质属性分类集合进行选择,也可以按照地理范围进行表示,一般情况下是两者结合进行的。总的来说,地质图是现实世界中地质客体在人脑中抽象的、具体的表达,是现实地质对象在图纸上的映射。如图7-11所示。
图7-11 地质图认知模式
一幅地质图总的内容应有地理要素(经纬度、坐标、地物、地貌)和地质要素(地质界线、构造线、矿层、矿体等),但比例尺不同取舍不一,图件的负载量也就不同。本文重点在于介绍地质要素,主要包括以下几方面的内容:
1)地质界线:地质图上各种地质界线是表示各种地质体在地表的露头及剥土后的分布情形。具体地说,就是各类地质体(沉积岩、变质岩、岩浆岩、矿层、矿体、构造线、断层等等)在地表的露头及剥土后的分布连线的投影,以此阐明一地区的地质特征。
2)构造线:在地质图上的构造线,根据比例尺大小而取舍。比例尺大时,小型构造也应表示;比例尺小时,则只能表示大一些的构造。构造线有以下几种:①断裂构造:包括正断层、逆断层、逆掩断层、平移断层、复活断层;②褶皱构造:在地质图上,一般的产状表示褶皱构造,而不表示褶皱轴线。褶皱构造有:向斜、背斜、倒转背斜、倒转向斜、隐伏背斜、短轴背斜和短轴向斜、穹窿构造及盆状构造;③裂隙、节理、片理、劈理、流线或流纹构造等。
3)产状:主要指矿体或岩层的走向和倾斜。走向是倾斜的岩层层面或矿层层面与水平面相交直线的延伸方向。倾斜包括倾向和倾角。倾向是垂直于岩层走向的倾斜线的水平投影的指向。倾角是倾斜层面和水平面在倾向方位上所夹的角度。
4)岩层的接触关系有:①整合接触:指同一地区两套沉积岩层的接触关系,在沉积层序上是连续的,产状是一致的,在上覆地层沉积之前,下伏地层没有曲褶、翘起或被侵蚀过;②不整合接触:同一地区两套岩层之间没有明显的沉积间断或缺失,古生物演化顺序是不连续的。不整合接触的两套地层的产状,有的可以是一致的,有的具有明显的角度相交。不整合接触类型包括角度不整合、假不整合等。③假整合(平行不整合):新、老两套岩层之间互相平行,但二者之间往往有较长期的沉积间断和显著的侵蚀面。
5)矿体露头:是指矿体露出地面的部分。
6)矿化带:是地质图上的主要内容之一,对含有矿化带,蚀变岩,标志层,均应表示。一副地质图除应有上述内容之外,还应表示出经纬线网、比例尺、图例、图名以及责任表等。
其所显示的信息类型的种类来讲是非常复杂的,大多数地质图都包含有多边形的背景信息,它们表示了地质单元及其之上的覆盖物,如水、冰等。将多边形分离的边界线的表示是非常重要的,它们表示了地质界线类型的区别,如接触关系等。将这些背景数据叠置在一起,就可以得到许多线状要素,如断层、褶皱、堤等,以及不同类型的点状要素,如构造符号、样点位置符号等。
(2)数字地质图
数字地质图(digital geologic map,简称dgm)是地质图的数字表现形式;从认知科学来讲,数字地质图是计算机技术应用于地球科学的结果,它将地理基础和地质解译数据记录成计算机可读的数字形式,以反映客观的地质世界。从数学角度严格地讲,数字地质图是地质空间对象、地质对象描述数据、图例的交集。如果用集合数学表示,则为:
DGM={Oi,Aj,Lk} (7-1)
(i=1,2,…,n;j=1,2,…,m;k=1,2,…,y)
式中:Oi为地质空间对象集合,Aj为地质空间对象描述数据集合,Lk为图例集合。一般的,对于一幅给定地质图,在给定的空间域中可以有个地质空间对象;对于一个给定的地质空间对象可以有0个或j个描述数据;而对于一幅数字地质图只能有且有一个图例与之对应。
图7-12 数字地质图定义的图解表示
图7-12模型中每一闭合的圈表示每一类对象或其一部分。空间对象(spatial objects)是真实地质世界能够被观测到具有几何形态特征的地质要素(地质单元和地质构造)的数字化抽象,能被典型地以点、线、面展示在二维平面图上;属性数据(描述数据)(descriptive data)是空间对象代表的地质要素所具有的地质属性特征,这些特征包括具体可见的物理特征,如颜色、出露形态、纹理,还有看肉眼看不见的化学组成、变质特征、地质年代、地质成因等;地图图例(map legends)是用于抽取相似(分类)的空间对象进行符号化展示,图例还包括了地图范围、比例尺、所用的分类标准、每类空间对象与对应的展示符号。
空间对象(spatial objects)与描述数据(descriptive data)的交集是具有几何图形和属性描述数据的单个空间对象(singular object archive),描述数据(descriptive data)与地图图例(map legends)的交集是按描述属性进行的数据分类(data classification),空间对象(spatial objects)与地图图例(map legends)的交集是按空间对象类型进行的空间分类(spatial classification)。
地图(map)是空间对象(spatial objects)及其描述数据(descriptive data)和地图图例(map legends)的交集,也是单个空间对象(singular object archive),空间分类(spatial classification)和数据分类(data classification)二者的交集,它是真实地质世界在地质图上的可视化、数字化的表现。
根据这一定义,可以得出如下 *** 作(图7-12):
空间分类=地质空间对象∩图例
数据选取和分类=属性数据∩图例
地质对象=地质空间对象∩属性数据
因此,图例类似于一个过滤器,当地质空间数据库建立以后,要得到一幅数字地质图,只需要根据制图目的和用途,设计图例;再用图例对空间数据库中的地质对象进行提取,便可以得到所需要的数字地质图。而图例的不同,可以得到不同主题的地质图,如区域地质图、矿产图、石油地质图等。
数字地质图是矿产勘查与评价所需空间数据的主要来源之一,准确合理地使用这些空间数据是确定矿产资源储量及其空间位置的基本保证。虽然,多数地图制图学家并不都赞成数字地图在地图制图方面比传统方法更为有效和省时,但几乎都认为起码在数据更新方面数字地图比传统地图更加有效和省时,而且数字地质图在地质数据的重复使用方面已经远远地超过了最初设计的要求。数字地质图可以根据需要以不同比例尺和不同地图投影进行重绘与变换,很容易增添、删除和修改地图要素,生成新用途的专题地质图。数字地质图与地球物理、地球化学遥感地质等多源地学数据综合集成,可以进行地质矿产资源评价与预测,也可以与环境数据集成进行地质环境评价等等。总之,数字地质图的用途是多方面的,它使地质图在资源环境、国民经济建设和社会各个方面的使用无限制的拓宽,具有重要的意义。
2.数字地质图数据库的构成要素
地质图空间数据库的各组成要素主要包括:对象类、要素类、关系类、综合要素类和要素数据集。组成地质图空间数据库要素数据集分为三大类:基本要素数据集、综合要素数据集和对象数据集。
(1)地质图数据库数据对象的定义
地质图空间数据库组织模型把地质图数据组织成关系型的数据对象:对象类、要素类、关系类、综合要素类和要素数据集。一个对象类在地理数据库是一个表,存储非空间数据。一个要素类是具有相同几何类型和相同属性的要素的集合。一个要素数据集是共享空间参考系统的要素类的集合。关系类是由一个关系规则构成的关联集合(可以用关联、依赖、组合和继承来描述对象之间的关系规则)。综合要素类与要素类相同,是共享空间参考系统的多个要素类的集合,在地质图数据模型中,由复合地质点、面、线要素实体类构成,但不与其他要素类构成拓扑关系。该数据模型对空间要素的定义更接近于现实世界,这种面向对象的数据模型,使用户可以根据具体的需要进行扩展,具有用户可定定义的特征(指对象类)。地质图数据对象定义如下。
(2)地质图要素数据集
地质图要素数据集是共享空间参考系统的要素类的集合。在地质图数据模型中,由地质点、面、线要素实体类构成。一个要素数据集的空间参考指定了包括坐标系统、投影系统和高程系统的空间参照系、空间域和精度。
地质图空间数据库的坐标系统可采用地理坐标系、北京54坐标系和西安80坐标系。地质图空间数据库的投影系统可根据比例尺不同进行选择。我国基本比例尺地形图除1:100万采用兰勃特投影(lambert)外,其他均采用高斯-克吕格投影。为减少投影变形,高斯-克吕格投影分为3度或6度带投影。地质图空间数据库的高程系统系统采用跟1956年黄海高程系,1985年国家高程基准。空间域为描述X和Y坐标范围、测量范围、Z范围,空间域描述了最大的空间范围。要素数据集的空间参考确定后,坐标系统可以改变,空间域则是固定的。
(3)地质图要素类
具有拓扑关系且具有相同几何类型和相同属性的要素的集合称为地质图要素类。构成地质图的点称为地质图点要素类,构成地质图的线称为地质图线要素类、构成地质图的面称为地质图面要素类。
(4)独立要素类
在地质图空间数据库中建立一个不属于任何要素数据集的要素类。其特点是独立要素类需要建立自己的空间参考坐标系统,并设定自己的投影系统参数和/X/Y域。在地质图数据模型中,图例及图饰部分(如:接图表、图例、综合柱状图、责任表、图切剖面、其他角图等)属于独立要素类。该独立要素类可采用平面坐标系。
(5)对象类
在地理数据库中,把实体分为对象。具有空间几何类型的对象称为要素类,把非空间几何类型的对象称为对象类。对象类在地理数据库中是一个表,存储非空间数据。在地质图数据模型中,一般一个要素类对应多个对象类。当一个表中的对象使用不同的属性域时,可以使用子类型来构成不同属性域的对象类。
(6)综合要素类
与要素类相同,是共享空间参考系统的要素类的集合。在地质图数据模型中,由复合地质点、线、面要素实体类构成。不与其他要素类构成拓扑关系。
(7)有效性规则
表和要素类存储相同类型的对象,具有相同的行为和属性。当要素类和表中的一个对象在所有的属性上具有有效值时,这个对象被称为有效对象;如果其中的一个属性包括无效值,则称为无效对象。在进行地理数据库设计时,通过建立一个或多个有效规则,可以确定如何判断要素类或表中一个特定对象的有效性。有效规则:属性域(attributedomain)、连接规则(connectivity rules)、关系规则(relationship rules)、定制规则(custom rules)。
(8)属性域
属性域(domains)是一个字段类型的合法值的规则,用于限制在表、要素类、或子类型的任何具体的属性字段内允许的值。每个要素类或表有一个属性域的集合,这些属性域用于不同的属性和子类型,并且可以在地理数据库的要素类和表之间共享。属性域可分为范围域和代码域。
3.数字地质图数据库模型分析
研究数字地质图数据模型的目的是为了在计算机中对地质图数据的组织、存储和应用提供一种结构,该结构应当独立于任何计算机应用软件,可以在任何GIS系统中实现。数字地质图建模是把地质图所包含数据组织为有用的,且更能反映地质实体真实信息的数据集合的过程,它是一个逻辑组织方式。数据建模过程分为三步:首先,选择一种数据模型来对现实世界的数据进行组织;然后,选择一些数据结构来表达该数据模型;最后,选择一些适合记录该数据结构的文件格式。一种数据模型可能有几种可选的数据结构,而一种数据结构又可能有多种文件格式进行存储[ bonham-cater,1994;陈述彭,1999 ]。如何使地质图数据模型、数据结构和文件存储格式有机地统一起来、自然过渡,而且各自保持其独立性,即各部分不随其他部分变化而变化?如何使计算机更具智能化,能够理解复杂的地质空间?这都是数据模型要研究和解决的问题。
传统的地质图数据模型不能很好地解决上述问题,面向对象的技术和方法给我们带来了曙光。面向对象数据模型是以单个空间地理对象为数据组织和存储的基本单位的,与拓扑关系数据模型相反,以独立完整、具有地理意义的对象为基本单位对地理空间进行表达,典型实例是ESRI公司的GeoDa-taBase模型。在具体组织和存储时,将对象的坐标数据和属性数据(如建立了部分拓扑,拓扑关系也放在表中保存)统一存放在关系数据库中。利用面向对象的思想对数字地质图数据进行重新组织与存储,使得数据的表达更接近于人们对客观世界的认识,其语义关系和内部关系更加合理,大大增强了高层次的地质空间分析能力。该模型在本质上更加概念化,而且更注重未来的发展。它使得数字地质图独立于任何给定的软件和硬件结构。面向对象数据模型在诸如ArcGIS和Smallword软件中可以实现。
面向对象数据模型要求点、线、面、注记分开存贮。对同一类空间对象赋予唯一的一个编码,存储时仅存储简单的点、线、面实体对象,显示输出时根据编码显示其相应的符号或线型。这即是实体符号化,它减少了空间数据的冗余,提高了空间分析的效率,体现了GIS与CAD的最大区别是内容与表现形式分离。通常用全要素编码(class id)标识区分各类空间对象,借助相应的(点)符号、线型和(面)填充形象化表达实体对象,实体的编码、符号用外挂的符号库存储。面向对象数据模型的组成结构图(图7-13)。
图7-13 面向对象数据模型的组成结构图
基于GIS的地质数据库建立涉及的主要问题是系统的数据库结构。空间数据库结构建设应从GIS理论基本概念出发,所涉及的主要内容有空间点、线、面图形数据以及空间图元组合图层、图类等,一般以GIS图层为基本出发点采用层状树形结构管理各图层。结构化的表格数据,例如属性数据、文本数据由关系数据库系统(rdbms)管理,利用oledb等数据通信技术实现空间数据和属性数据的同时存储。从而,系统实现综合查询、数据统计、分析预测、制图输出、报表生成、数据表现等多方面的应用。建立一个geodatabase数据库,包含上述所有数据类型,通过在catalog 9.2 中的树状文件目录管理图层(catalog tree),我们可以清晰地看到,一个geodatabase所能包含的所有数据类型。包含所有数据类型的geodatabase树状展开图,如图7-14所示。
ESRI提出的geodatabase空间数据模型,将空间数据存放在关系数据表中,空间对象或特征是具有geometry属性的表(table)中的一个行(bow)to geodatabase的对象模型包括对象(object)、特征(feature)、关系(relationship)三种类型的对象,这些对象在关系数据库中表示如表格7-1所示:
表7-1 geodatabase对象及其在关系数据库中的表示方法
图7-14 包含所有数据类型的GeoDatabase树状展开图
面向对象数据模型具有对象管理、修改方便,查询检索、空间分析容易的优点。根据存储的数据类型,面向对象数据模型具体包括空间特征集、栅格数据集、TIN数据集、空间定位数据、域和规则等六大类型。该模型采用面向对象技术,将各类专题对象按点、线、面和注记四大空间特征抽象为空间对象类,分别用不同的空问表存储;将空间对象的几何特征(图形)、属性特征连同一些 *** 作封装为对象的属性和行为,统一存放在数据表的列中,一条记录对应一个点、线或面类型的空间对象,其存贮结构如图7-15所示:
图7-15 以对象为中心的面向对象数据模型实现图形和属性统一存储
这种数据模型彻底解决了长期以来空间对象与其属性数据,在物理上分离带来的诸多难题,进而实现基于关系数据库的GIS空间数据一与其他非空间关系数据一体化管理,给GIS系统开发、应用带来了极大的便捷性。如利用空间引擎对空间与非空间数据进行 *** 作,同时可以利用大型关系数据库海量数据管理、事务处理(transaction)、记录锁定、并发控制、数据仓库等功能。
4.GIS与数字地质图数据库的结合
GIS是分析和处理海量地理数据的通用技术,借助GIS,基于大量综合信息,可进行空间采样,对构造演化、火成活动、沉积相、矿产形成、模拟区域地质演化等复杂问题进行时空和多元统计分析,对成矿预测和矿产勘查提供有力分析工具。在数据量充裕前提下,GIS分析具有定量、定时、定位的特点,可给出动态(不同时间、不同位置)结果。借助深部与时间数据,GIS分析实际上可拓展到四维空间。
P.Gardenfors提出在客观世界和符号表达之间存在着概念层,他将知识表达分为三个层次,即:亚概念层、概念层、符号层,通过亚概念层感知客观世界,然后通过概念层将感知的内容抽象成为概念进行分类,将概念(分类)通过符号层表达出来。地理信息在概念层形成,在符号层表达,所以地理信息库的建立就是通过概念层对地理空间(客观世界)的抽象而形成地理信息概念空间,将该概念空间形式化后就成为本体化的地理信息空间,即可在计算环境下通过符号层(图形)表达出来。
地质信息系统研究的关键问题之一,就是构造图7-16中的地质模型,目的是通过有限的、不完全的并且含有各种噪声的观测数据来推断地下空间的物质、能量的分布和流动情况。
图7-16 地质认知过程的简化示意图
大部分矿产都不是暴露在表面,而是埋在地表深部。利用GIS的方法通过了解地表上层物质的空间分布,就可以判断矿藏存在的可能性。在一个找矿预测区域往往已知部分矿区和矿点,这些矿区和矿点具有很多的空间属性和地理属性,要想很直观的用以往普通的数据库管理系统去把它表达出来,可谓耗时费力。而GIS的出现为矿产资源评价和管理提供了前所未有的评价工具与手段。GIS是采集、管理、处理、分析、显示、输出多种来源的与地理空间位置相关信息的计算机系统。随着GIS与RS(遥感)、GPS(全球卫星定位系统)相结合的“3 S”集成以及计算机互联网的迅速发展,GIS在地质找矿中将发挥更加重要的作用。
目前,GIS与地质空间数据库的结合主要体现在以下几点:
(1)建立地质矿产资源数据库
描述矿产地属性的数据内容繁杂,类别众多,可分为属性数据和空间数据,矿产地各类属性信息认识、分析和评价该矿区也很重要。因此,地理空间信息在矿产资源管理中占有非常重要的地位。地质矿产数据库在GIS的支持下,结合矿产资源数据类型可建立多种地理空间数据库和属性数据库,利用GIS先进的数据库和图库管理对于各种地质图件和数据的长期保存及修改变得容易。
(2)图形显示的直观性和形象性
专题图不仅是一种重要的研究手段,同时也能有效而直观的反映研究成果。在地质数据库基础上,GIS可将各种数据或分析成果以专题图的形式直观而有效的显示,并可进行人机交互式地设计、编辑、修改。在成果输出方面,GIS能够提供高质量的预测成果图件,直观清晰,一目了然。GIS的这些功能,能将各种矿产资源的文字描述与空间地理位置有效的结合与表达,大大提高了矿产资源数据的直观性和形象性。
(3)空间分析功能
GIS的空间分析功能是GIS区别于其他计算机系统的主要标志。地质数据库系统涉及GIS多种空间分析功能,结合地质“专家知识”,为大范围大区域内实现快速、准确的成矿预测创造了有利条件。GIS吸取专家的经验及知识较容易,并且进行成矿预测具有空间直观性,避免了预测中的人为因素;能够弥补一些人工方法的缺陷(如对于断裂控矿影响宽度带的确定)。与传统的方法相比,GIS空间分析功能可以更加迅速地对大量数据进行对比和分析,大大节约了时间,缩短了研究周期,
(4)多源信息的集成
地质数据库的数据是多源数据。有不同精度、不同比例尺、不同数据源、不同格式的数据,借助GIS能将这些多源的数据有机地集成在一起,能提供集成管理多源地学数据(包括以文字、数字为主的属性信息和以图形图像为主的空间信息),具有方便建立模型及进行空间模拟分析的能力,使数据的分析更有效和定量化。进而,可以以多尺度、多方位反映某个地区的地质成矿信息。
由此可见,海量的地质数据与GIS强大的空间信息处理和分析功能的有机结合,是地质领域对多源地学信息综合分析进行成矿预测划时代的理想工具。
通过以上三个章节的分析论述,GIS在理论和技术上的日臻完善和强大,使得基于GIS地质图数据库的应用更加深入人心。在理论上,地理空间和地理信息空间的点本质认识以及地理信息元组概念的提出对地理信息应用特别是在地质领域的应用理论体系的建立提供了一条理论依据和入口;在技术上,以ArcGIS为代表的新一代地理信息系统的日益完善:在地理信息表达上,以本体为核心的地理信息表达方式为地质信息的表达及应用提供了强有力的工具,使得原有地理信息所不能完成的知识发现、复杂环境建模等复杂应用在新地理信息系统下成为现实;在地理信息分析技术上,ArcGIS从地理信息库(知识库)、基于知识库的智能可视化,以及地理信息处理三个角度为地理信息的各种应用提供了强有力的工具支持,特别是9.0版本开发以后,对探索式空间数据分析方法整合使从海量日益复杂的地理信息中进行数据挖掘和知识发现可以在空间、时间、属性一体化方式下进行。
什么是GIS?从学科的角度, GIS 是在地理学、地图学、测量学和计算机科学等学科基础上发展起来的一门学科,具有独立的学科体系; 从功能上, GIS 具有空间数据的获取、存储、显示、编辑、处理、分析、输出和应用等功能; 从系统学的角度, GIS 具有一定结构和功能,是一个完整的系统. 简而言之, GIS 是一个基于数据库管理系统( DBMS )的分析和管理空间对象的信息系统,以地理空间数据为 *** 作对象是地理信息系统与其它信息系统的根本区别.
什么是地图数据库?
地图数据库(cartographic database)是以地图数字化数据为基础的数据库,是存储在计算机中的地图内容各要素(如控制点、地貌、土地类型、居民地、水文、植被、交通运输、境界等)的数字信息文件、数据库管理系统及其它软件和硬件的集合.
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)