一个建议,就是分析字段的含义,以及典型的查询需求,把这个字段拆分为多个独立字段,分别建立索引,这样查询才爽。例如你这个数据,看起来是‘年月日时分秒’的格式,可以把这些信息分散到年、月、日这样的字段里面,就可以模糊查询所有年度的【月】或者类似的复杂组合——需要模糊的内容不写在WHERE里面即可。
1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<> *** 作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
这是自然规律使然。形象一点来讲,有人将各一枚硬币分别丢进一碗水里和一口水塘里,然后您要将它们捞出来,哪个任务完成的快?当然是前者了,因为工作量没法比啊!数据库查询道理也是一样的,数据越多从中检索出记录的速度越慢。你也许会说数据库不是有索引吗?咱不用从头到尾逐条检索呀。没错,有索引数据库引擎可以直奔目标,检索少量数据的时候,1千条记录跟千万条记录比,从中检索出记录的耗时相差无几,但是如果要检索出所有记录的话,两者的系统和时间开销可就不是一个数量级了,后者肯定慢得多。
管理一个小仓库跟管理一个巨型仓库的人力、物力开销肯定是不一样的,数据库表查询也同理!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)