数据库按照使用和归类不同,它的分类也是不同的,我基本归纳了如下几类:
一,按国际上通用的分类方法,数据库分为以下三大类:
1、参考数据库(Reference databases),是能指引用户到另一信息源获取原文或其他细节的数据库;
2、源数据库(Source databases),指能直接提供所需原始资料或具体数据的数据库。;
3、混合型数据库(Mixed databases),能同时存贮多种类型数据的数据库。
二,按数据结构来分类,有三种:
1、层次式数据库
2、网络式数据库
3、关系式数据库
三,常用数据库分类:
1,IBM 的DB2。
2, Oracle。
3, Informix。
4,Sybase。
5,SQL Server。
6,PostgreSQL。
7,mySQL。
数据挖掘,也称之为数据库中知识发现是一个可以从海量数据中智能地和自动地抽取一些有用的、可信的、有效的和可以理解的模式的过程.分类是数据挖掘的重要内容之一.目前,分类已广泛应用于许多领域,如医疗诊断、天气预测、信用证实、顾客区分、欺诈甄别. 现己有多种分类的方法,其中决策树分类法在海量数据环境中应用最为广泛.其原因如下:1、决策树分类的直观的表示方法较容易转化为标准的数据库查询
2、决策树分类归纳的方法行之有效,尤其适合大型数据集.
3、决策树在分类过程中,除了数据集中已包括的信息外,不再需要额外的信息.
4、决策树分类模型的精确度较高. 该文首先研究了评估分类模型的方法.在此基础上着重研究了决策树分类方法,并对决策树算法的可伸缩性问题进行了具体分析,最后给出了基于OLE DB for DM开发决策树分类预测应用程序.
product_idtype_id---------------------
aaa 1
aaa 2
aaa 3
bbb 1
bbb 2
用关系数据表
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)