哑变量问题可以参考SPSSAU帮助手册中的说明:哑变量说明-SPSSAU
也可以直接使用在线SPSS「SPSSAU」的生成变量功能,一键设置哑变量。然后分析时少放入一个作为参考项,其他放入自变量框即可。
回归分析在spss中,logistics回归中,有专门的选项来处理需要哑变量化的变量,只需单击“Categorical..”进行设置即可。但是对于多元线性回归就没有那么幸运了。
用computer或recode设置一组哑变量。由于哑变量是一个整体变量,所以进行变量筛选时必须共同进退。因此,讲所有哑变量同一般变量一下直接进行筛选是不对的,会出现一部分变量进入一部分变量未进入的情形。解决的方法是:将同一因素下的哑变量进行归组,在纳入方法中选择了“ENTER”来确保这些哑变量同进同出,而其它连续型变量和二分类变量则归为另一组,纳入方法为STEPWISE。然后在没有纳入这组哑变量的情况下再做一次STEPWISE,再来比较是不是应该纳入这组哑变量。
可以的,以下是两种方法。
1,用spss进行多元回归以后,系统会自动给出x1、x2和x3(从大到小)的r的平方和,相减就是解释率。
2,设置哑变量。通常在回归分析时,如果是二分类变量可以直接当作连续性变量进行回归,而多分类时,则需要设置哑变量,即将每个类别转换成0,1的编码来表示,因此这里求相关系数时。
也可以采用类似的设置哑变量,只不过是有几个类别就设置几个哑变量,这也相当于将多分类变量变成了多个0、1编码的二分类变量,然后再直接使用相关分析,选择所有的哑变量和连续性因变量进行普通的pearson相关,就可以得出每个分类与因变量的相关系数了。
扩展资料:分类变量的分类
1,无序分类变量:
无序分类变量(unordered categorical variable)是指所分类别或属性之间无程度和顺序的差别。,它又可分为:二项分类,如性别(男、女),药物反应(阴性和阳性)等;多项分类,如血型(O、A、B、AB),职业(工、农、商、学、兵)等。
对于无序分类变量的分析,应先按类别分组,清点各组的观察单位数,编制分类变量的频数表,所得资料为无序分类资料,亦称计数资料。
2,有序分类变量
有序分类变量(ordinal categorical variable)各类别之间有程度的差别。如尿糖化验结果按-、±、+、++、+++分类;疗效按治愈、显效、好转、无效分类。对于有序分类变量,应先按等级顺序分组,清点各组的观察单位个数,编制有序变量(各等级)的频数表,所得资料称为等级资料。
变量类型不是一成不变的,根据研究目的的需要,各类变量之间可以进行转化。例如血红蛋白量(g/L)原属数值变量,若按血红蛋白正常与偏低分为两类时,可按二项分类资料分析;若按重度贫血、中度贫血、轻度贫血、正常、血红蛋白增高分为五个等级时,可按等级资料分析。
有时亦可将分类资料数量化,如可将病人的恶心反应以0、1、2、3表示,则可按数值变量资料(定量资料)分析。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)