时间嘀嗒的设定原理和更改方法是什么?

时间嘀嗒的设定原理和更改方法是什么?,第1张

延时函数会涉及到系统滴答时钟,所以有必要介绍下系统滴答时钟的原理。系统里有一个计数变量OSTickCtr。系统滴答时钟是由滴答定时器产生的,其实也就是通过一个定时器来产生特定时间间隔的中断,每产生一个系统时钟中断这个变量就自加1。而延时函数就是用这个OSTickCtr来产生延时的,比如OSTimeDly()函数在相对延时模式下延时20个时钟节拍,当前OSTickCtr=100,那么当OSTickCtr==120的时候延时结束。当然,通过与OSTickCtr挂钩来延时是不准确的,比如滴答定时器每5ms产生一个中断,然后OSTickCtr++。比如当前OSTickCtr==100开始延时,因为不知道过1毫秒还是4毫秒OSTickCtr会加到101。所以这个延时精度取决于系统心跳时钟的频率。

系统时钟是在os_cfg_app.h文件里面设置的,OS_CFG_TICK_RATE_HZ代表系统心跳的频率,注意这个是频率,不是周期。本工程用的系统心跳频率为200HZ,也就是5ms一个心跳。

当程序调用OSTimeDly()或者OSTimeDlyHMSM()这两个延时函数时,系统会把当前任务挂起来,然后去运行别的任务,等到延时结束后程序才会回到当前任务运行。这个和不带系统的软件延时有点区别,不带系统的软件延时程序会卡在当前位置一直等待延时结束,但是带系统的延时函数在延时期间系统会去运行别的任务,而不会让系统傻傻地等啥都不干。

1、首先点击dd-wrt系统右下角的时间,然后点击“更改日期和时间设置”。

2、其次在d出的窗口中点击“更改日期和时间”。

3、最后点击“更改日期设置”即可。

双重差分 (Differences-in-Differences,DID),其常用于政策评估效应研究,比如研究‘鼓励上市政策’、‘开通沪港通’、‘开通高铁’、‘引入新教育模式’等效应时,分析效应带来的影响情况。

涉及两个关键数据,分别是Treated和Time,此处Treated为地区(A和B两个地区),以及时间项Time(高铁开通前和开通后)。

同时研究‘开通高铁’参于gdp的影响,那么被解释变量Y即为gdp,与此同时还涉及可选的控制变量(控制变量为可选项,多数情况下并不需要),比如教育投入,人口或对外投资情况等,如下表说明:

特别提示:

理论上,双重差分研究可在很大程度上避免数据内生性问题。‘政策效应’通常为外生项,因而不存在双向因果关系,比如开通高铁影响gdp,gdp同时影响开通开通。与此同时,双重差分也有着一定的前提性要求,通常其希望满足‘平行趋势假设’(Parallel Trend Assumption),即time项为0时,即比如开通高铁前,A类和B类两类地区的gdp数据需要无明显的差异性。

至于‘平行趋势假设’(共同趋势)的检验,其有多种检验方式。包括t检验法,‘交叉项’显著性检验法,F统计量检验法,图示法。具体说明如下:

针对‘交互项显著性检验法’或‘F统计量检验法’,时间项可能仅为2期(实验前和实验后),也可能为多期m期(m>2),那么哑变量设置后,放入分析的交互项为‘实验前时的交互项’,如下表说明:

关于哑变量说明: https://spssau.com/helps/otherdocuments/dummy.html

如果是使用t检验法,SPSSAU在进行DID分析时默认有提供,如果是使用‘交互项显著性检验法’或者‘F统计量检验法’,可先将时间项作哑变量处理后,与treated项作交互项,然后进行线性回归(SPSSAU通用方法里面的线性回归或计量研究里面的OLS回归均可)。如果是使用‘图示法’,则使用SPSSAU【可视化->簇状图 】完成。

某地区(实验组,B地区)通过法律将最低工资从每小时4.25美元提高中到5.05美元,但相邻的另一地区(控制组,A地区)保持不变。某研究人员收集实施新法律前后就业人数数据,使用DID差分法进行研究‘提高最低工资’是否有助于‘就业人数增加’,即提高最低工资是否会提升民众的就业积极性。

此案例时:treated为地区(数字0为控制组即A地区,数字1为实验组即B地区)。Time为时间(数字0为法律实施前,数字1为法律实施后)。研究的效应项即被解释变量Y为‘就业人数’。与此同时还有另外3个控制变量。

双重差分法DID,其通常用于政策效应类研究。共涉及两项,分别是实验组别treated(数字0表示控制组,数字1表示实验组),和时间项time(数字0表示实验前,数字1表示实验后)。一般希望在实验前即time为0时,实验组别数据基本保持一致性,即满足‘平行趋势假设’。‘平行趋势假设’检验有多种方式,建议查看本页面中相关说明。

比如本案例可使用SPSSAU的簇状图进行‘平行趋势假设’查看,如下图可以看到,实验前时两个组别的‘从业人数’即效应水平基本完全一致,说明满足‘平行趋势假设’,因而可以继续分析,当然也可使用实验前时,控制组和实验组效应值的差异情况进行检验,SPSSAU默认有提供。

本案例 *** 作截图如下,案例中带3个控制变量,如果没有控制变量可直接不放入即可,如下:

SPSSAU共输出5类表格,分别是DID模型描述统计,DID模型结果汇总,t 检验(Before),t 检验(After),OLS回归分析结果。说明如下:

上表格展示不同实验组别,以及实验前后时的样本分布情况。本案例共有155个实验样本,77个为实验前,78个为实验后。

上表格展示DID模型最终结果。分别包括实验前和实验后时,控制组或实验组的效应值水平(特别提示,效应值是一种量化指标,并非被解释变量从业人数的平均值(但通常接近于平均值),数学原理上其为ols回归的回归系数值)。

上表格显示:在实验前before状态时,实验组和控制组的差分效应量为-0.611,并且没有呈现出显著性(p = -0.556>0.1),即说明实验前时,实验组和控制组的效应水平基本一致并没有明显的差异性,也即说明满足‘平行趋势假设’。

实验后after状态时,实验组和控制组的差分效应量为2.324,并且呈现出显著性(p = 0.024 <0.05),即说明在实验后时间点时,实验组的效应值明显高于控制组效应值。

最终查看应该以diff-in-diff,即最终的双重差分值,上表格时,双重差分效应值为2.935且呈现出显著性(p = 0.045 <0.05),也即说明双重差分效应显著,即说明‘提高最低工资’是否有助于‘就业人数增加’,提高的平均效应水平为2.935。

上表格展示实验前状态时,控制组和实验组两类别下被解释变量或控制变量的差异情况。通常仅关注被解释变量的差异性即可,从上表格可知,控制组和实验组并没有呈现出显著性(p = 0.978 >0.05),也即说明实验前时控制组和实验组的‘从业人数’并没有明显的差异性,即说明数据通过‘平行趋势假设’。

上表格展示实验后状态时,控制组和实验组两类别下被解释变量或控制变量的差异情况。通常仅关注被解释变量的差异性即可,从上表格可知,控制组和实验组呈现出显著性(p = 0. 043 <0.05),也即说明实验前时控制组和实验组的‘从业人数’呈现出明显的差异性,说明实验后状态下实验组和控制组的平均水平有着显著性差异,而且实验组(19.949)明显高于控制组(17.065)。

上表格展示OLS回归结果,其为DID差分模型的数学原理,比如上表格中treate*time这一交互项的回归系数值为2.935即为‘DID模型结果汇总’表格中的Diff-in-Diff效应值。

涉及以下几个关键点,分别如下:


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/11374146.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-15
下一篇 2023-05-15

发表评论

登录后才能评论

评论列表(0条)

保存