1.R数据的保存与加载
可通过save()函数保存为.Rdata文件,通过load()函数将数据加载到R中。
[ruby] view plain copy
> a <- 1:10
> save(a,file='d://data//dumData.Rdata')
> rm(a) #将对象a从R中删除
> load('d://data//dumData.Rdata')
> print(a)
[1] 1 2 3 4 5 6 7 8 9 10
2.CSV文件的导入与导出
下面创建df1的数据框,通过函数write.csv()保存为一个.csv文件,然后通过read.csv()将df1加载到数据框df2中。
[ruby] view plain copy
> var1 <- 1:5
> var2 <- (1:5)/10
> var3 <- c("R and","Data Mining","Examples","Case","Studies")
> df1 <- data.frame(var1,var2,var3)
> names(df1) <- c("VariableInt","VariableReal","VariableChar")
> write.csv(df1,"d://data//dummmyData.csv",row.names = FALSE)
> df2 <- read.csv("d://data//dummmyData.csv")
> print(df2)
VariableInt VariableReal VariableChar
1 1 0.1 R and
2 2 0.2 Data Mining
3 3 0.3 Examples
4 4 0.4 Case
5 5 0.5 Studies
3.通过ODBC导入与导出数据RODBC提供了ODBC数据库的连接。
3.1从数据库中读取数据
odbcConnect()建立一个数据库连接,sqlQuery()向数据库发送一个SQL查询,odbcClose()关闭数据库连接。
[ruby] view plain copy
library(RODBC)
connection <- odbcConnect(dsn="servername",uid="userid",pwd="******")
query <- "SELECT * FROM lib.table WHERE ..."
# or read query from file
# query <- readChar("data/myQuery.sql", nchars=99999)
myData <- sqlQuery(connection, query, errors = TRUE)
odbcClose(connection)
sqlSave()和sqlUpdate()用于写入或更新一个ODBC数据库表。3.2从Excel文件中导入与导出数据
[ruby] view plain copy
library("RODBC")
conn<-odbcConnectExcel("D:/data/Amtrak.xls")
Amtrak<-sqlFetch(conn,"Data")
close(conn)
由于在windows系统环境中可以打开.csv文件方式有多种,如记事本、excel、Notepad++等,只要是文本编辑器都能正确打开,以EXCEL的打开方式为例做演示保存CSV文件的具体 *** 作步骤如下。
1、在EXCEL中打开需要存为CSV文件的文档如下图所示。
2、在文件上方的菜单栏中选择文件选项的另存为,在d出的选项中选择并点击“其他格式”选项按扭,进入下一页面。
3、在存储文件类型的选项栏中选择“CVS”类型,如下图所示,选好后点击保存。
4、这样CSV文件就存储好了,在存储的位置查下文件信息吧吧,如下图所示。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)