基于官方文档:
https://docs.python.org/zh-cn/3/library/multiprocessing.html
日乐购,刚才看到的一个博客,写的都不太对,还是基于官方的比较稳妥
我就是喜欢抄官方的,哈哈
通常我们使用Process实例化一个进程,并调用 他的 start() 方法启动它。
这种方法和 Thread 是一样的。
上图中,我写了 p.join() 所以主进程是 等待 子进程执行完后,才执行 print("运行结束")
否则就是反过来了(这个不一定,看你的语句了,顺序其实是随机的)例如:
主进加个 sleep
所以不加join() ,其实子进程和主进程是各干各的,谁也不等谁。都执行完后,文件运行就结束了
上面我们用了 os.getpid() 和 os.getppid() 获取 当前进程,和父进程的id
下面就讲一下,这两个函数的用法:
os.getpid()
返回当前进程的id
os.getppid()
返回父进程的id。 父进程退出后,unix 返回初始化进程(1)中的一个
windows返回相同的id (可能被其他进程使用了)
这也就解释了,为啥我上面 的程序运行多次, 第一次打印的parentid 都是 14212 了。
而子进程的父级 process id 是调用他的那个进程的 id : 1940
视频笔记:
多进程:使用大致方法:
参考: 进程通信(pipe和queue)
pool.map (函数可以有return 也可以共享内存或queue) 结果直接是个列表
poll.apply_async() (同map,只不过是一个进程,返回结果用 xx.get() 获得)
报错:
参考 : https://blog.csdn.net/xiemanR/article/details/71700531
把 pool = Pool() 放到 if name == " main ": 下面初始化搞定。
结果:
这个肯定有解释的
测试多进程计算效果:
进程池运行:
结果:
普通计算:
我们同样传入 1 2 10 三个参数测试:
其实对比下来开始快了一半的;
我们把循环里的数字去掉一个 0;
单进程:
多进程:
两次测试 单进程/进程池 分别为 0.669 和 0.772 几乎成正比的。
问题 二:
视图:
post 视图里面
Music 类:
直接报错:
写在 类里面也 在函数里用 self.pool 调用也不行,也是相同的错误。
最后 把 pool = Pool 直接写在 search 函数里面,奇迹出现了:
前台也能显示搜索的音乐结果了
总结一点,进程这个东西,最好 写在 直接运行的函数里面,而不是 一个函数跳来跳去。因为最后可能 是在子进程的子进程运行的,这是不许的,会报错。
还有一点,多进程运行的函数对象,不能是 lambda 函数。也许lambda 虚拟,在内存??
使用 pool.map 子进程 函数报错,导致整个 pool 挂了:
参考: https://blog.csdn.net/hedongho/article/details/79139606
主要你要,对函数内部捕获错误,而不能让异常抛出就可以了。
关于map 传多个函数参数
我一开始,就是正常思维,多个参数,搞个元祖,让参数一一对应不就行了:
报错:
参考:
https://blog.csdn.net/qq_15969343/article/details/84672527
普通的 process 当让可以穿多个参数,map 却不知道咋传的。
apply_async 和map 一样,不知道咋传的。
最简单的方法:
使用 starmap 而不是 map
结果:
子进程结束
1.8399453163146973
成功拿到结果了
关于map 和 starmap 不同的地方看源码:
关于apply_async() ,我没找到多参数的方法,大不了用 一个迭代的 starmap 实现。哈哈
关于 上面源码里面有 itertools.starmap
itertools 用法参考:
https://docs.python.org/zh-cn/3/library/itertools.html#itertool-functions
有个问题,多进程最好不要使用全部的 cpu , 因为这样可能影响其他任务,所以 在进程池 添加 process 参数 指定,cpu 个数:
上面就是预留了 一个cpu 干其他事的
后面直接使用 Queue 遇到这个问题:
解决:
Manager().Queue() 代替 Queue()
因为 queue.get() 是堵塞型的,所以可以提前判断是不是 空的,以免堵塞进程。比如下面这样:
使用 queue.empty() 空为True
可以每个在func中加上一个参数data,data是这个线程处理的数据;
多线程处理的时候,给每个线程分配相应的data就可以了。
给个示例:
# -*- coding:utf-8 -*-import thread,threading
import time
def FuncTest(tdata):
print tdata
class mythread(threading.Thread):
def __init__(self,threadname):
threading.Thread.__init__(self)
def run(self):
lock.acquire()
FuncTest(ft)
lock.release()
def MutiThread(num):
threads=[]
i=0
global ft
for x in xrange(num):
threads.append(mythread(num))
for t in threads:
time.sleep(0.5)
lock.acquire()
ft=GetThreadParam(datafile,num,i)
#print '[%s]Thread:%s,Testdata:%s'%(time.ctime(),t,ft)
i=i+1
t.start()
lock.release()
for t in threads:
t.join()
def GetThreadParam(datafile, num, curthread):
#线程数需要小于文件行数
f=open(datafile,'r')
lines=f.readlines()
divres=divmod(len(lines),num)
if curthread<(num-1):
res=lines[curthread*divres[0]:(curthread+1)*divres[0]]
elif curthread==(num-1):
res=lines[curthread*divres[0]:((curthread+1)*divres[0]+divres[1])]
return res
f.close()
if __name__ == '__main__':
global num,lock
datafile='a.txt'
num=3 #num 并发数
lock=threading.Lock()
MutiThread(num)
a.txt文件内容如下
1
2
3
4
5
6
7
8
9
10
3个线程并发时,运行结果:
>>>
['1\n', '2\n', '3\n']
['4\n', '5\n', '6\n']
['7\n', '8\n', '9\n', '10']
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)