HDFS的特点:
HDFS不适用的场景
HDFS的组成
HDFS的数据复制
HDFS复制的选择
HDFS的安全模式
HDFS的元数据持久化
HDFS架构
数据块
为什么HDFS默认的Block为128MB(64MB)?
分布式文件系统中的块进行抽象带来的好处:
NameNode
NameNode主要功能如下:
DataNode
SecondaryNameNode
SecondaryNameNode合并Fsimage和EditsLog文件过程如下:
CheckPoint过程如下:
SecondaryNameNode会周期性地将EditsLog文件进行合并,合并前提条件如下:
机架感知
HDFS的RPC机制
RPC的实现流程
RPC的实体模型
HDFS的文件读取
文件读取的流程如下:
HDFS的文件写入
写入文件的过程比读取复杂,步骤如下:
HDFS的HA(High Availability,高可用性)机制
HA架构解释如下:
HDFS的federation机制
HDFS Federation使用了多个独立的NameNode/NameSpace使得HDFS的命名服务能够水平扩展
HDFS Federation中的NameNode之间是联盟关系,它们之间相互独立且不需要相互协调。HDFS Federation中的NameNode提供了名字空间和块关联功能.HDFS Federation中的DataNode被所有的NameNode用作公共存储块的地方.每一个DataNode都会向所在集群中所有的NameNode注册,并周期性的发送心跳和块信息报告,同时处理来自NameNode的指令
在HDFS中,所有的更新、回滚都是以NameNode和BlockPool为单元发生的.即同HDFS Federation中不同的NameNode/BlockPool之间没有什么关系
多个名字空间的管理问题
HDFS Federation中名字空间管理的基本原理:
维护HDFS
追加数据
并行复制
升级与回滚
两种升级升级都简单分为以下几步:
添加节点
删除节点
HDFS权限管理
1)客户端向namenode请求上传文件,namenode检查目标文件是否已存在,父目录是否存在。
2)namenode返回是否可以上传。
3)客户端请求第一个 block上传到哪几个datanode服务器上。
4)namenode返回3个datanode节点,分别为dn1、dn2、dn3。
5)客户端请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成
6)dn1、dn2、dn3逐级应答客户端(ack响应)
7)客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答
8)当一个block传输完成之后,客户端再次请求namenode上传第二个block的服务器。(重复执行3-7步)
1.客户端通过调用DistributedFileSystem的create方法创建新文件。
2.DistributedFileSystem通过RPC调用namenode去创建一个没有blocks关联的新文件,创建前, namenode会做各种校验,比如文件是否存在,客户端有无权限去创建等。如果校验通过, namenode就会记录下新文件,否则就会抛出IO异常。
3.前两步结束后,会返回FSDataOutputStream的对象,与读文件的时候相似, FSDataOutputStream被封装成DFSOutputStream。DFSOutputStream可以协调namenode和 datanode。客户端开始写数据到DFSOutputStream,DFSOutputStream会把数据切成一个个小的packet,然后排成队 列data quene(数据队列)。
4.DataStreamer会去处理接受data quene,它先询问namenode这个新的block最适合存储的在哪几个datanode里(比如重复数是3,那么就找到3个最适合的 datanode),把他们排成一个pipeline。DataStreamer把packet按队列输出到管道的第一个datanode中,第一个 datanode又把packet输出到第二个datanode中,以此类推。
5.DFSOutputStream还有一个对列叫ack quene,也是由packet组成,等待datanode的收到响应,当pipeline中的所有datanode都表示已经收到的时候,这时ack quene才会把对应的packet包移除掉。
如果在写的过程中某个datanode发生错误,会采取以下几步:
1)pipeline被关闭掉;
2)为了防止防止丢包ack quene里的packet会同步到data quene里;
3)把产生错误的datanode上当前在写但未完成的block删掉;
4)block剩下的部分被写到剩下的两个正常的datanode中;
5)namenode找到另外的datanode去创建这个块的复制。当然,这些 *** 作对客户端来说是无感知的。
6.客户端完成写数据后调用close方法关闭写入流。
7.DataStreamer把剩余得包都刷到pipeline里,然后等待ack信息,收到最后一个ack后,通知datanode把文件标视为已完成。
注意:客户端执行write *** 作后,写完的block才是可见的(注:和下面的一致性所对应),正在写的block对客户端
#### 网络拓扑
在本地网络中,两个节点被称为“彼此近邻”是什么意思?在海量数据处理中,其主要限制因素是节点之间数据的传输速率——带宽很稀缺。这里的想法是将两个节点间的带宽作为距离的衡量标准。
节点距离:两个节点到达最近的共同祖先的距离总和。
例如,假设有数据中心d1机架r1中的节点n1。该节点可以表示为/d1/r1/n1。利用这种标记,这里给出四种距离描述。
Distance(/d1/r1/n1, /d1/r1/n1)=0(同一节点上的进程)
Distance(/d1/r1/n1, /d1/r1/n2)=2(同一机架上的不同节点)
Distance(/d1/r1/n1, /d1/r3/n2)=4(同一数据中心不同机架上的节点)
Distance(/d1/r1/n1, /d2/r4/n2)=6(不同数据中心的节点)
#### 机架感知
- 官方ip地址:
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-common/RackAwareness.html
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html#Data_Replication
- 低版本Hadoop副本节点选择
第一个副本在client所处的节点上。如果客户端在集群外,随机选一个。
第二个副本和第一个副本位于不相同机架的随机节点上。
第三个副本和第二个副本位于相同机架,节点随机。
- 高副本节点选择
第一个副本在client所处的节点上。如果客户端在集群外,随机选一个。
第二个副本和第一个副本位于相同机架,随机节点。
第三个副本位于不同机架,随机节点。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)