爬虫必备 XPath 和 lxml

爬虫必备 XPath 和 lxml,第1张

XPath 全称为 Xml Path Language,即 Xml 路径语言,是一种在 Xml 文档中查找信息的语言。它提供了非常简洁的路径选择表达式,几乎所有的节点定位都可以用它来码蠢橡选择。

XPath 可以用于 Xml 和 Html,在爬虫中经常使用 XPath 获取 Html 文档内容。

lxml 是 Python 语言用 Xpath 解析 XML、Html文档功能最丰富的、最容易的功能模块。

节点

在 XPath 中有七种节点分别是元素、属性、文本、文档、命名空间、处理指令、注释,前3种节点为常用节点

请看下面的 Html 例子,(注:这个例子全文都需要使用)

在上面的例子中

节点关系

在 XPath中有多中节点关系分别是父节点、子节点、同胞节点、先辈节点、后代节点

在上面的例子中

用上面的 Html 文档举个例子

同样用上面的Html文档举个例子

XPath 中的谓语就是删选表达式,相当于 SQL 中的 Where 条件,谓语被嵌在 [ ] 中档歼

lxml.etree 一个强大的 Xml 处理模块,etree 中的 ElementTree 类是一个主要的类迟旁,用于对XPath的解析、增加、删除和修改节点。

etree.parse() 函数可以解析一个网页文件还可以解析字符串, 在网页中下载的数据一般都是字符串形式的,使用 parse(StringIO(str)) 将整个页面内容解析加载构建一个 ElementTree 对象,ElementTree 可以使用 XPath 语法精准找到需要的数据。

结果:

2. 获取所有 li 标签数据

结果:

3. 获取带 class=’blank’ 属性数据

结果:

4. 属性 *** 作

结果:

5. 获取最后一个p标签数据

结果:

6. 添加子节点

7. 删除子元素

8. 遍历元素后代

结果

经过前面四章的学习,我们已经可以使用Requests库、Beautiful Soup库和Re库,编写基本的Python爬虫程序了。那么这一章就来学习一个专业的网络爬虫框架--Scrapy。没错,是框架,而不是像前面介绍的函数功能库。

Scrapy是一个快速、功能强大的网络爬虫框架。

可能大家还不太了解什么是框架,爬虫框架其实是实现爬虫功能的一个软件结构和功能组件的集合。

简而言之, Scrapy就是一个爬虫程序的半成品,可以帮助用户实现专业的网络爬虫。

使用Scrapy框架,不需要你编写大量的代码,Scrapy已经把大部分工作都做好了,允许你调用几句代码便自动生成爬虫程序,可以节省大量的时间。

当然,框架所生成的代码基本是一致的,如果遇到一些特定的爬虫任务时,就不如自己使用Requests库搭建来的方便了。

PyCharm安装

测试安装:

出现框架版本说明安装成功。

掌握Scrapy爬虫框架的结构是使用好Scrapy的重中之重!

先上图:

整个结构可以简单地概括为: “5+2”结构和3条数据流

5个主要模块(及功能):

(1)控制所有模块之间的数据流。

(2)可以根据条件触发事件。

(1)根据请求下载网页。

(1)对所有爬取请求进行调度管理。

(1)解析DOWNLOADER返回的响应--response。

(2)产生爬取项--scraped item。

(3)产生额外的爬取请求--request。

(1)以流水线方式处理SPIDER产生的爬取项。

(2)由一组 *** 作顺序组成,类似流水线,每个 *** 作是一个ITEM PIPELINES类型。

(3)清理、检查和查重爬取项中的HTML数据并将数据存储到数据库中。

2个中间键:

(1)对Engine、Scheduler、Downloader之间进行用户可配置的控制。

(2)修改、丢弃、新增请求或响应。

(1)对请求和爬取项进行再处理。

(2)修改、丢弃、新增请求或爬取项。

3条数据流:

(1):图中数字 1-2

1:Engine从Spider处获得爬取请求--request。

2:Engine将爬取请求转发给Scheduler,用于调度。

(2):图中数字 3-4-5-6

3:Engine从Scheduler处获得下一个要爬取的请求。

4:Engine将爬取请求通过中间件发送给Downloader。

5:爬取网页后,Downloader形成响应--response,通过中间件发送给Engine。

6:Engine将收到的响应通过中间件发送给耐如Spider处理。

(3):图中数字 7-8-9

7:Spider处理响应后产生爬取项--scraped item。

8:Engine将爬取项发送给Item Pipelines。

9:Engine将爬取请求发送给Scheduler。

任务处理流程:从Spider的初始爬取请求开始爬取,Engine控制各模块数据流,不间断从Scheduler处获得爬取请求,直至请求为空,最后到Item Pipelines存储数据结束。

作为用户,只需配置好Scrapy框架的Spider和Item Pipelines,也就是数据流的入口与出口,便可完成一个爬虫程序的搭建激含。Scrapy提供了简单的爬虫命令语句,帮助用户一键配置剩余文件,那我们便来看看有哪些好用的命令吧。

Scrapy采用命令行创建和运行爬虫

PyCharm打开Terminal,启动Scrapy:

Scrapy基本命令行格式:

具体常用命令如下:

下面用一个例子来学习一下命令的使用:

1.建立一个Scrapy爬虫工程,在已启动的Scrapy中继续输入:

执行该命令,系统会在PyCharm的工程文件中自动创建一个工程,命明亩笑名为pythonDemo。

2.产生一个Scrapy爬虫,以教育部网站为例http://www.moe.gov.cn:

命令生成了一个名为demo的spider,并在Spiders目录下生成文件demo.py。

命令仅用于生成demo.py文件,该文件也可以手动生成。

观察一下demo.py文件:

3.配置产生的spider爬虫,也就是demo.py文件:

4.运行爬虫,爬取网页:

如果爬取成功,会发现在pythonDemo下多了一个t20210816_551472.html的文件,我们所爬取的网页内容都已经写入该文件了。

以上就是Scrapy框架的简单使用了。

Request对象表示一个HTTP请求,由Spider生成,由Downloader执行。

Response对象表示一个HTTP响应,由Downloader生成,有Spider处理。

Item对象表示一个从HTML页面中提取的信息内容,由Spider生成,由Item Pipelines处理。Item类似于字典类型,可以按照字典类型来 *** 作。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/tougao/12218634.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存