它是分布式的,有分多服务器联合起来实现其功能。
适合一次写入,多次读出的场景,且不支持文件的修改。
是和数据分析,并不适合用来做网盘应用。
NameNode(nn):1.存储文件的元数据{1.文件信息(文件名,文件目录结构,文件属性(生成时间,副本数,文件权限)),2.每个文件的块列表和块所在的DataNode(Block映射信息)},2.处理客户端读写请求。
DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验。
Secondary NameNode(2nn):是一个辅助后台的程序,用来监控HDFS状态,每隔一段时间获取HDFS元数据的快照。
上面计算的每秒丛敏高传输大小为100MB只是一个近似值,实际为128M。
机械硬盘文件顺序读写的速度为100MB/s
普通固态为500MB/s
pcie固态的速度可以达到2000MB/s
因此块的大小可以分别设为128MB,512MB,2048MB.
CPU,磁盘,网卡之间的协同效率 即 跨物理机/机架之间文件渗尺传输速率
1. 如果块设置过大,
2. 如果块设置过小,
文件块越大,寻址时间越短,但磁盘传输时间越长;
文件块越小,寻址时间越长,但磁盘传输时间越短。
HDFS中的文件是以数据块(Block)的形式存储的,默认最基本的存储单位是128 MB(Hadoop 1.x为64 MB)的数据块。也就是说,存储在HDFS中的文件都会被分割成128 MB一块的数据块进行存储,如果文件本身小于一个数据块的大小,则按实际大竖岁答小存储,并不占用整个数据块空间。HDFS的数据块之所以会设置这么大,其目的是减少寻址开销。数据块数量越多,寻址数据块所耗的时间就越多。当然也不会设置过大,MapReduce中的Map任务通常一次只处理一个块中的数据,如果任务数太少,作业的运行速度就会比较慢。HDFS的每一个数据块默认都有三个副本,分别存储在不同的DataNode上,以实现容错功能。因此,若数据块的某个副本丢失并不会影响对数据块的访问。数据块大小和副本数量可在配置文件中更改
NameNode是HDFS中存储元数据(文件名称、大小和位置等信息)的地方,它将所有文件和文件夹的元数据保存在一个文件系统目录树中,任何元数据信息的改变,NameNode都会记录。HDFS中的每个文件都被拆分为多个数据块存放,这种文件与数据块的对应关系也存储在文件系统目录树中,由NameNode维护。NameNode还存储数据块到DataNode的映射信息,这种映射信息包括:数据块存放在哪些DataNode上、每个DataNode上保存了哪些数据块。NameNode也会周期性地接收来自集群中DataNode的“心跳”和“块报告”。通过“心跳”与DataNode保持通信,监控DataNode的状态(活着还是宕机),若长时间接收不到“心跳”信息,NameNode会认为DataNode已经宕机,从而做出相应的调整策略。“块报告”包含了DataNode上所有数据块的列表信息。
DataNode是HDFS中真正存储数据的地方。客户端可以向DataNode请求写入或读取数据块,DataNode还在来自NameNode的指令下执行块的创建、删除和复制,并且周期性地向NameNode汇报数据块信息。
NodeSecondaryNameNode用于帮助NameNode管理元数据,从而使NameNode能够快速、高效地工作。它并不是第二个NameNode,仅是NameNode的一个辅助工具。HDFS的元数据信息主要存储于两个文件中:fsimage和edits。fsimage是文件系统映射文件,主余慧要存储文件元数据信息,其中包含文件系统所有目录、文件信息以及数据块的索引;edits是HDFS *** 作日志文件,HDFS对文件系统的修改日志会存储到该文件中。当NameNode启动时,会从文件fsimage中读取HDFS的状态,雀辩也会对文件fsimage和edits进行合并,得到完整的元数据信息,随后会将新HDFS状态写入fsimage。但是在繁忙的集群中,edits文件会随着时间的推移变得非常大,这就导致NameNode下一次启动的时间会非常长。为了解决这个问题,则产生了SecondaryNameNode,SecondaryNameNode会定期协助NameNode合并fsimage和edits文件,并使edits文件的大小保持在一定的限制内。SecondaryNameNode通常与NameNode在不同的计算机上运行,因为它的内存需求与NameNode相同,这样可以减轻NameNode所在计算机的压力。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)