Impala简介:Cloudera Impala对你存储在Apache Hadoop在HDFS,HBase的数据提供直接查询互动的SQL。除了梁袜禅像Hive使用相同的统一存储平台,Impala也使用相同的元数据,SQL语法(Hive SQL),ODBC驱动程序和用户界面(好首Hue Beeswax)。Impala还提供了一个熟悉的面向批量或实时查询和统一平台。
Impala安装:
1.安装要求
(1)软件要求
Red Hat Enterprise Linux (RHEL)/CentOS 6.2 (64-bit)
CDH 4.1.0 or later
Hive
MySQL
注意:Impala不支持在Debian/Ubuntu, SuSE, RHEL/CentOS 5.7系统中安装。
(2)硬件要求在Join查询过程中需要将数据集加载内存中进行橡尘计算,因此对安装Impalad的内存要求较高。
2、安装准备(1) *** 作系统版本查看
>more/etc/issue
CentOSrelease 6.2 (Final)
Kernel \ron an \m
(2)机器准备10.28.169.112mr5
10.28.169.113mr6
10.28.169.114mr7
10.28.169.115mr8
各机器安装角色
mr5:NameNode、ResourceManager、SecondaryNameNode、Hive、impala-state-store
mr6、mr7、mr8:DataNode、NodeManager、impalad
(3)用户准备在各个机器上新建用户hadoop,并打通ssh
(4)软件准备到cloudera官网下载:
Hadoop:
hadoop-2.0.0-cdh4.1.2.tar.gz
hive:
hive-0.9.0-cdh4.1.2.tar.gz
impala:
impala-0.3-1.p0.366.el6.x86_64.rpm
impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm
impala-server-0.3-1.p0.366.el6.x86_64.rpm
impala-shell-0.3-1.p0.366.el6.x86_64.rpm
4、hadoop-2.0.0-cdh4.1.2安装
(1)安装包准备
hadoop用户登录到mr5机器,将hadoop-2.0.0-cdh4.1.2.tar.gz上传到/home/hadoop/目录下并解压:
tar zxvf hadoop-2.0.0-cdh4.1.2.tar.gz
(2)配置环境变量
修改mr5机器hadoop用户主目录/home/hadoop/下的.bash_profile环境变量:
exportJAVA_HOME=/usr/jdk1.6.0_30
exportJAVA_BIN=${JAVA_HOME}/bin
exportCLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
export JAVA_OPTS="-Djava.library.path=/usr/local/lib-server -Xms1024m -Xmx2048m -XX:MaxPermSize=256m -Djava.awt.headless=true-Dsun.net.client.defaultReadTimeout=600
00-Djmagick.systemclassloader=no -Dnetworkaddress.cache.ttl=300-Dsun.net.inetaddr.ttl=300"
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=$HADOOP_HOME
exportHADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
export PATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(3)修改配置文件
在机器mr5上hadoop用户登录修改hadoop的配置文件(配置文件目录:hadoop-2.0.0-cdh4.1.2/etc/hadoop)
(1)、slaves :
添加以下节点
mr6
mr7
mr8
(2)、hadoop-env.sh :
增加以下环境变量
exportJAVA_HOME=/usr/jdk1.6.0_30
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=${HADOOP_HOME}
export HADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(3)、core-site.xml :
fs.default.name
hdfs://mr5:9000
The name of the defaultfile system.Either the literal string "local" or a host:port forNDFS.
true
io.native.lib.available
true
hadoop.tmp.dir
/home/hadoop/tmp
A base for other temporarydirectories.
(4)、hdfs-site.xml :
dfs.namenode.name.dir
file:/home/hadoop/dfsdata/name
Determines where on thelocal filesystem the DFS name node should store the name table.If this is acomma-delimited list of directories,then name table is replicated in all of thedirectories,for redundancy.
true
dfs.datanode.data.dir
file:/home/hadoop/dfsdata/data
Determines where on thelocal filesystem an DFS data node should store its blocks.If this is acomma-delimited list of directories,then data will be stored in all nameddirectories,typically on different devices.Directories that do not exist areignored.
true
dfs.replication
3
dfs.permission
false
(5)、mapred-site.xml:
mapreduce.framework.name
yarn
mapreduce.job.tracker
hdfs://mr5:9001
true
mapreduce.task.io.sort.mb
512
mapreduce.task.io.sort.factor
100
mapreduce.reduce.shuffle.parallelcopies
50
mapreduce.cluster.temp.dir
file:/home/hadoop/mapreddata/system
true
mapreduce.cluster.local.dir
file:/home/hadoop/mapreddata/local
true
(6)、yarn-env.sh :
增加以下环境变量
exportJAVA_HOME=/usr/jdk1.6.0_30
exportHADOOP_HOME=/home/hadoop/hadoop-2.0.0-cdh4.1.2
exportHADOOP_PREFIX=${HADOOP_HOME}
exportHADOOP_MAPRED_HOME=${HADOOP_HOME}
exportHADOOP_COMMON_HOME=${HADOOP_HOME}
exportHADOOP_HDFS_HOME=${HADOOP_HOME}
exportHADOOP_YARN_HOME=${HADOOP_HOME}
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin
exportJAVA_HOME JAVA_BIN PATH CLASSPATH JAVA_OPTS
exportHADOOP_LIB=${HADOOP_HOME}/lib
exportHADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
(7)、yarn-site.xml:
yarn.resourcemanager.address
mr5:8080
yarn.resourcemanager.scheduler.address
mr5:8081
yarn.resourcemanager.resource-tracker.address
mr5:8082
yarn.nodemanager.aux-services
mapreduce.shuffle
yarn.nodemanager.aux-services.mapreduce.shuffle.class
org.apache.hadoop.mapred.ShuffleHandler
yarn.nodemanager.local-dirs
file:/home/hadoop/nmdata/local
thelocal directories used by the nodemanager
yarn.nodemanager.log-dirs
file:/home/hadoop/nmdata/log
thedirectories used by Nodemanagers as log directories
(4)拷贝到其他节点
(1)、在mr5上配置完第2步和第3步后,压缩hadoop-2.0.0-cdh4.1.2
rm hadoop-2.0.0-cdh4.1.2.tar.gz
tar zcvf hadoop-2.0.0-cdh4.1.2.tar.gz hadoop-2.0.0-cdh4.1.2
然后将hadoop-2.0.0-cdh4.1.2.tar.gz远程拷贝到mr6、mr7、mr8机器上
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr6:/home/hadoop/
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr7:/home/hadoop/
scp/home/hadoop/hadoop-2.0.0-cdh4.1.2.tar.gz hadoop@mr8:/home/hadoop/
(2)、将mr5机器上hadoop用户的配置环境的文件.bash_profile远程拷贝到mr6、mr7、mr8机器上
scp/home/hadoop/.bash_profile hadoop@mr6:/home/hadoop/
scp/home/hadoop/.bash_profile hadoop@mr7:/home/hadoop/
scp/home/hadoop/.bash_profile hadoop@mr8:/home/hadoop/
拷贝完成后,在mr5、mr6、mr7、mr8机器的/home/hadoop/目录下执行
source.bash_profile
使得环境变量生效
(5)启动hdfs和yarn
以上步骤都执行完成后,用hadoop用户登录到mr5机器依次执行:
hdfsnamenode -format
start-dfs.sh
start-yarn.sh
通过jps命令查看:
mr5成功启动了NameNode、ResourceManager、SecondaryNameNode进程;
mr6、mr7、mr8成功启动了DataNode、NodeManager进程。
(6)验证成功状态
通过以下方式查看节点的健康状态和作业的执行情况:
浏览器访问(本地需要配置hosts)
http://mr5:50070/dfshealth.jsp
http://mr5:8088/cluster
5、hive-0.9.0-cdh4.1.2安装
(1)安装包准备
使用hadoop用户上传hive-0.9.0-cdh4.1.2到mr5机器的/home/hadoop/目录下并解压:
tar zxvf hive-0.9.0-cdh4.1.2
(2)配置环境变量
在.bash_profile添加环境变量:
exportHIVE_HOME=/home/hadoop/hive-0.9.0-cdh4.1.2
exportPATH=$PATH:${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:${HIVE_HOME}/bin
exportHIVE_CONF_DIR=$HIVE_HOME/conf
exportHIVE_LIB=$HIVE_HOME/lib
添加完后执行以下命令使得环境变量生效:
..bash_profile
(3)修改配置文件
修改hive配置文件(配置文件目录:hive-0.9.0-cdh4.1.2/conf/)
在hive-0.9.0-cdh4.1.2/conf/目录下新建hive-site.xml文件,并添加以下配置信息:
hive.metastore.local
true
javax.jdo.option.ConnectionURL
jdbc:mysql://10.28.169.61:3306/hive_impala?createDatabaseIfNotExist=true
javax.jdo.option.ConnectionDriverName
com.mysql.jdbc.Driver
javax.jdo.option.ConnectionUserName
hadoop
javax.jdo.option.ConnectionPassword
123456
hive.security.authorization.enabled
false
hive.security.authorization.createtable.owner.grants
ALL
hive.querylog.location
${user.home}/hive-logs/querylog
(4)验证成功状态
完成以上步骤之后,验证hive安装是否成功
在mr5命令行执行hive,并输入”show tables”,出现以下提示,说明hive安装成功:
>hive
hive>show tables
OK
Time taken:18.952 seconds
hive>
6、impala安装
说明:
(1)、以下1、2、3、4步是在root用户分别在mr5、mr6、mr7、mr8下执行
(2)、以下第5步是在hadoop用户下执行
(1)安装依赖包:
安装mysql-connector-java:
yum install mysql-connector-java
安装bigtop
rpm -ivh bigtop-utils-0.4+300-1.cdh4.0.1.p0.1.el6.noarch.rpm
安装libevent
rpm -ivhlibevent-1.4.13-4.el6.x86_64.rpm
如存在其他需要安装的依赖包,可以到以下链接:
http://mirror.bit.edu.cn/centos/6.3/os/x86_64/Packages/进行下载。
(2)安装impala的rpm,分别执行
rpm -ivh impala-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-server-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-debuginfo-0.3-1.p0.366.el6.x86_64.rpm
rpm -ivh impala-shell-0.3-1.p0.366.el6.x86_64.rpm
(3)找到impala的安装目录
完成第1步和第2步后,通过以下命令:
find / -name impala
输出:
/usr/lib/debug/usr/lib/impala
/usr/lib/impala
/var/run/impala
/var/log/impala
/var/lib/alternatives/impala
/etc/default/impala
/etc/alternatives/impala
找到impala的安装目录:/usr/lib/impala
(4)配置Impala
在Impala安装目录/usr/lib/impala下创建conf,将hadoop中的conf文件夹下的core-site.xml、hdfs-site.xml、hive中的conf文件夹下的hive-site.xml复制到其中。
在core-site.xml文件中添加如下内容:
dfs.client.read.shortcircuit
true
dfs.client.read.shortcircuit.skip.checksum
false
在hadoop和impala的hdfs-site.xml文件中添加如下内容并重启hadoop和impala:
dfs.datanode.data.dir.perm
755
dfs.block.local-path-access.user
hadoop
dfs.datanode.hdfs-blocks-metadata.enabled
true
(5)启动服务
(1)、在mr5启动Impala state store,命令如下:
>GLOG_v=1 nohup statestored-state_store_port=24000 &
如果statestore正常启动,可以在/tmp/statestored.INFO查看。如果出现异常,可以查看/tmp/statestored.ERROR定位错误信息。
(2)、在mr6、mr7、mr8启动Impalad,命令如下:
mr6:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr6 -ipaddress=10.28.169.113 &
mr7:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr7 -ipaddress=10.28.169.114 &
mr8:
>GLOG_v=1 nohup impalad -state_store_host=mr5-nn=mr5 -nn_port=9000 -hostname=mr8 -ipaddress=10.28.169.115 &
如果impalad正常启动,可以在/tmp/impalad.INFO查看。如果出现异常,可以查看/tmp/ impalad.ERROR定位错误信息。
(6)使用shell
使用impala-shell启动Impala Shell,分别连接各Impalad主机(mr6、mr7、mr8),刷新元数据,之后就可以执行shell命令。相关的命令如下(可以在任意节点执行):
>impala-shell
[Not connected]>connect mr6:21000
[mr6:21000] >refresh
[mr6:21000]>connectmr7:21000
[mr7:21000]>refresh
[mr7:21000]>connectmr8:21000
[mr8:21000]>refresh
(7)验证成功状态
使用impala-shell启动Impala Shell,分别连接各Impalad主机,刷新元数据,之后就可以执行shell命令。相关的命令如下(可以在任意节点执行):
>impala-shell
[Not connected]>connect mr6:21000
[mr6:21000]>refresh
[mr6:21000] >show databases
default
[mr6:21000] >
出现以上提示信息,说明安装成功。
对spark、hive、impala、hdfs的常用命令作了如下总结,欢迎大家补充!
1. Spark的使用:
以通过SecureCRT访问IP地址:10.10.234.198 为例进行说明:
先输入:ll //查询集群是否装有spark
>su - mr
>/home/mr/spark/bin/beeline -u "jdbc:hive2:/bigdata198:18000/" -n mr -p ""
&gt.show databases//显示其中数据库,例如
>use bigmax//使用数据库bigmax
>show tables//查询目录中所有的表
>desc formatted TableName//显示表的详细信息,包括分区、字段、地址等信息闷歼
>desc TableName//显示表中的字段和分区信息
>select count(*) from TableName//显示表中数据数量,可以用来判断表是否为空
>drop table TableName//删除表的信息
>drop bigmax //删除数据库bigmax
>describe database zxvmax //查询数据库zxvmax信息
创建一个表
第一步:
>create external table if not exists lte_Amaze //创建一个叫lte_Amaze的表
( //括号中每一行为表中的各个字段的名称和其所属的数据类型,并用空格隔开
DateTime String,
MilliSec int,
Network int,
eNodeBID int,
CID int,
IMSI String,
DataType int,
AoA int,
ServerRsrp int,
ServerRsrq int,
TA int,
Cqi0 Tinyint,
Cqi1 Tinyint //注意,最后一个字段结束后,没有逗号
)
partitioned by (p_date string, p_hour INT) //以p_date和p_hour作为分区
row format delimited fields terminated by ',' /*/*表中行结构是以逗号作为分隔符,与上边的表中字段以逗号结尾相一致*/
stored as textfile//以文本格式进行保存
第二步:添加分区,指定分区的位置
>alter table lte_Amaze add partition (p_date='2015-01-27',p_hour=0) location'/lte/nds/mr/lte_nds_cdt_uedetail/p_date=2015-01-27/p_hour=0'
//添加lte_Amaze表中分区信息,进察罩袜行赋值。
//并制定分区对应目录/lte/nds/mr下表lte_nds_cdt_uedetail中对应分区信息
第三步:察看添加的结果
>show partitions lte_Amaze; //显示表的分区信息
2. hdfs使用:
#su - hdfs //切换到hdfs用户下 、
#hadoop fs –ls ///查看进程
# cd /hdfs/bin //进入hdfs安装bin目录
>hadoop fs -ls /umtsd/cdt/ //查询/umtsd/cdt/文件目录败激
>hadoop fs -mkdir /umtsd/test //在/umtsd目录下创建test目录
>hadoop fs -put /home/data/u1002.csv /impala/data/u5002 //将home/data/u1002.csv这个文件put到hdfs文件目录上。put到hdfs上的数据文件以逗号“,”分隔符文件(csv),数据不论类型,直接是数据,没有双引号和单引号
>hadoop fs -rm /umtsd/test/test.txt //删除umtsd/test目录下的test.txt文件
>hadoop fs -cat /umtsd/test/test.txt //查看umtsd/test目录下的test.txt文件内容
3hive *** 作使用:
#su - mr //切换到mr用户下
#hive //进入hive查询 *** 作界面
hive>show tables//查询当前创建的所有表
hive>show databases//查询当前创建的数据库
hive>describe table_name{或者desc table_name}//查看表的字段的定义和分区信息,有明确区分(impala下该命令把分区信息以字段的形式显示出来,不怎么好区分)
hive>show partitions table_name//查看表对应数据现有的分区信息,impala下没有该命令
hive>quit//退出hive *** 作界面
hive>desc formatted table_name查看表结构,分隔符等信息
hive>alter table ceshi change id id int修改表的列数据类型 //将id数据类型修改为int 注意是两个id
hive>SHOW TABLES '.*s'按正条件(正则表达式)显示表,
[mr@aico ~]$ exit退出mr用户 *** 作界面,到[root@aico]界面
impala *** 作使用:
#su - mr //切换到mr用户下
#cd impala/bin //进入impala安装bin目录
#/impala/bin>impala-shell.sh -i 10.10.234.166/localhost //进入impala查询 *** 作界面
[10.10.234.166:21000] >show databases//查询当前创建的数据库
[10.10.234.166:21000] >use database_name//选择使用数据库,默认情况下是使用default数据库
[10.10.234.166:21000] >show tables//查询当前数据库下创建的所有表
[10.10.234.166:21000] >describe table_name//查看表的字段的定义,包括分区信息,没有明确区分
[10.10.234.166:21000] >describe formatted table_name//查看表对应格式化信息,包括分区,所属数据库,创建用户,创建时间等详细信息。
[10.10.234.166:21000] >refresh table_name//刷新一下,保证元数据是最新的
[10.10.234.166:21000] >alter TABLE U107 ADD PARTITION(reportDate="2013-09-27",rncid=487)LOCATION '/umts/cdt/
MREMITABLE/20130927/rncid=487' //添加分区信息,具体的表和数据的对应关系
[10.10.234.166:21000] >alter TABLE U100 drop PARTITION(reportDate="2013-09-25",rncid=487)//删除现有的分区,数据与表的关联
[10.10.234.166:21000] >quit//退出impala *** 作界面
[mr@aicod bin]$ impala-shell得到welcome impala的信息,进入impala 查询 *** 作界面
[aicod:21000] >按两次tab键,查看可以用的命令
alter describe help profile shell values
connect drop history quit show version
create exit insert select unset with
desc explain load set use
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)