许多地质现象具有标度不变的特征,如岩石碎片、断层、地震、火山喷发、矿藏和油井等.这些现象的频数和大小之间的分布具有标度不变性.分形分布的特点要求大于某一尺度的数目,与物体大小之间存在幂函数关系.
幂函数分布可应用于那些具有标度不变性的地质现象.标度不变性提供应用幂函数分形分布的基础.我们见到的地形是由诸如断裂、褶皱和弯曲等构造过程产生的,然而又经过侵蚀和沉积将其加以改变.证据说明,侵蚀是标度不变的或分形过程;河系是典型的分形树的例子;地形经常是复杂的和混沌的.
许多地球物理数据具有幂函数频谱,包括重力、地磁和地表地形.由于幂函数频谱由振幅和斜率决定,因此利用它们可以进行数据集的结构分析.分形结构可作为对资料两点间进行内插值处理的依据.
矿产资源分布不均匀性是尺度不变的.地壳中矿产资源分布的不均匀性是众所周知的.例如,世界上已知的大油田(指原油储量在5亿桶以上的油田)中有58%位于一个宽750~1300英里,长约6000英里的U字型地带中.对全球已知的600个盆地中的大约400个进行了勘探,已发现有工业性油气的盆地的有160个,其中的25个盆地集中了已知石油储量的86%,这当中6个盆地占世界油气储量的65%,而仅中东一个盆地含有效储量就高达40%以上.又如,世界钨矿储量主要分布在环太平洋成矿带,但钨矿在我国华南的分布仍然极不均匀.按储量统计,特大型、大型及中型矿床分别占总储量的62%、20%和12%,而占矿床矿点总数93.5%多的小型矿床及矿化点只占总储量的4%.其他几乎所有的矿产资源分布均有类似的规律,也就是说,占全球面积很小的个别区域集中了某一矿种储量的绝大部分,少数几个矿田的储量占该区总储量的绝大部分,少数几个矿体集中了矿床储量的绝大部分.
品位分布的这种不均匀性有时可表现为极为完美的自相似性.David在研究品位-吨位曲线时发现,当在一个大的沉积面积上用1000m的网度进行钻探后,分别选择一个品位最佳的和品位最差的两个小区进行100m网度的加密钻探后,令人惊奇的是,虽然两个小区中可含有高品位和低品位,但两小区中各自的平均品位与整个区域上的平均品位精确地相同.
构造带分布的尺度也具不变性.不同断裂长度与条数的统计表明,断裂长度-频数关系服从幂函数分布,并且规模不同的断裂其平均间距也不同,规模大的断裂相距较远,任一级别的断裂的长度与他们之间平均距离之比接近常数,这个比值几乎不随断裂级别而变化.因此,它可用来衡量一个地区内构造活动强度.
断裂长度分布为幂型分布的成因,主要是因为沿着一条主干断裂旁侧常发育有一组或多组次一级的断裂,其规模远小于主干断裂但条数显著增加,在一级断裂旁侧又派生出更次一级的断裂,如此等等,这就形成了断裂大小分布的自相似性.在一条断裂带中,不同部位的宽度通常不一样,由于不少矿体直接赋存于断裂带中,断裂破碎带的宽度的分布是极为重要的.研究表明,一个断裂带中断裂破碎带宽度的分布也是幂型分布.
同一裂隙系统中裂隙在空间上的展布也是分形的,其中最典型的例子是产于外接触带中的脉状钨矿床的5层楼分带,从岩体边部向外依次出现尖灭带、大肠带、薄脉带、细脉带及线脉带,综观整个脉带,与所谓的放电现象极为相似,这是一种有分枝的分形.泽田等人曾用随机生长过程模拟放电现象,在模拟中,两维网格中随机图像是按照如下的规律发展的:图像端部以概率p笔直向前发展,从非端部开始以概率q产生新的分枝.该过程的惟一参数是比值R=p/q,这种图形的分维数随R而变化.
S.M.Cargill等通过对汞矿的开采历史资料的研究发现,一个矿床中开采矿石的累计品位与累计开采矿石量之间满足关系式:lgG=a-blgT,式中的T为累计开采矿石量,G为累计品位,a,b为常数,b=0.6~0.95.上式可以改写为幂函数形式.美国从1906年到1979年间铜以及相应的副产品金和银的累计矿石量与累计品位之间均存在着同样的关系.时间上具有分形的另一个典型例子是陨石坑的年龄分布.根据现有资料,愈是古老的陨石坑数目愈少,而年轻的陨石坑数目则明显增多.因此,陨石坑年龄在时间轴上的分布是不均匀的,并且是分形的.如果某一现象的分维与所考虑空间的维数一致,则是均匀的,不存在分形,否则就可以认为研究对象受到某一因素的影响而呈某种形式的丛集分布.由于长期地质作用使得许多古陨石坑消失了,相当于把它们从时间轴上抹掉了,因此,便产生了时间上的分形.
自相似性是事物在一定尺度范围内不随观察尺度变化的性质,在无标度区从一部分得到的结论可以外推到整个无标度区,从而简化研究.例如,在一个矿区,如果从矿区到矿体这个层次范围是自相似的,则研究矿床分带时可先研究一个矿体,得到的结论可作为整个矿田、矿区的近似或进一步研究的指导.如果无标度区的下界已接近实验设备的尺度,则可以进行模拟实验,将实验结果推广到整个无标度区.显然,自相似性可以作为模拟实验的依据,并据其评价实验结果的可利用程度.
自然现象在局部和整体的某种相似性上并不是在任何尺度上都成立,通常只是在某些特定的尺度范围内才成立.这些尺度范围称为“无标度区”.在实际问题中为了考察一个事物是否存在局部和整体的相似性,只要检测该事物是否存在“无标度区”即可.检测“无标度区”的方法如下:以尺度r把事物划分成N个相似的部分,对变化的r画出lnN-lnr曲线,然后检查曲线上是否有明显的直线段,直线段对应的r的区域即是无标度区.这种方法的理论依据是自相似集的相似维数(lnN/lnr)是不依赖于尺度r的一个常数.
世间的事物往往有自己的特征尺度(特征长度,特征时间等),用尺丈量万里长城,或用寸测量人体细胞,都是不合适的,前者显然太短,后者又嫌太长.用特征尺度的概念来想事推理,处理问题,可以简便地得出合理的带普遍性的结论.
我们在试图定量地描述自然现象时,往往要建立数理模型,然后求解,获得定量结果.在整个过程中把握客体的特征尺度是关键的.把握好特征尺度,问题得到解决的可靠性就更大了.
无标度性,就是所研究的客体与尺度无关,无论测量的单位如何改变,研究的客体性质不发生变化.
第一点 你要知道什么是尺度,scale。不同大小的物体有着不同的尺度,这个scale的表示,可以用放大缩小表示,可以用高斯blur来模拟。
如果不同的尺度下都有同样的关键点,那么在不同的尺度的输入图像下就都可以检测出来关键点匹配了。
所以就有了尺度不变性。
关键字:高斯尺度金字塔
打个比方,人近视眼就是一个高斯blur,blur的越大说明尺度越大。
SIFT通过不同sigma的高斯blur参数,模拟出了不同尺度的特征。
然后用DOG图像求的关键点。
高斯金字塔的每一层都不一样,每一组都不一样。
所以模拟出来不同的尺度情况,这样你有需要检测的图像的尺度就和模拟出来的大体对上了。
所以不同尺度的都能检测,所以尺度不变性。
你需要看原始英文论文,一看什么都懂了。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)