你得查看后台存在的进程 #jobs
#fg
#bg
两个命令是调入前台和后台的命令
在命令后面加上一个 &
比如:
rm -rf /tmp/ &
Linux 技巧:让进程在后台可靠运行的几种方法
WeiboGoogle+用电子邮件发送本页面
我们经常会碰到这样的问题,用 telnet/ssh 登录了远程的 Linux 服务器,运行了一些耗时较长的任务, 结果却由于网络的不稳定导致任务中途失败。如何让命令提交后不受本地关闭终端窗口/网络断开连接的干扰呢?下面举了一些例子, 您可以针对不同的场景选择不同的方式来处理这个问题。
nohup/setsid/&
场景:
如果只是临时有一个命令需要长时间运行,什么方法能最简便的保证它在后台稳定运行呢?
hangup 名称的来由
在 Unix 的早期版本中,每个终端都会通过 modem 和系统通讯。当用户 logout 时,modem 就会挂断(hang up)电话。 同理,当 modem 断开连接时,就会给终端发送 hangup 信号来通知其关闭所有子进程。
解决方法:
我们知道,当用户注销(logout)或者网络断开时,终端会收到 HUP(hangup)信号从而关闭其所有子进程。因此,我们的解决办法就有两种途径:要么让进程忽略 HUP 信号,要么让进程运行在新的会话里从而成为不属于此终端的子进程。
1. nohup
nohup 无疑是我们首先想到的办法。顾名思义,nohup 的用途就是让提交的命令忽略 hangup 信号。让我们先来看一下 nohup 的帮助信息:
NOHUP(1) User Commands NOHUP(1) NAME nohup - run a command immune to hangups, with output to a non-tty SYNOPSIS nohup COMMAND [ARG]... nohup OPTION DESCRIPTION Run COMMAND, ignoring hangup signals. --help display this help and exit --version output version information and exit可见,nohup 的使用是十分方便的,只需在要处理的命令前加上 nohup 即可,标准输出和标准错误缺省会被重定向到 nohup.out 文件中。一般我们可在结尾加上"&"来将命令同时放入后台运行,也可用">filename 2>&1"来更改缺省的重定向文件名。
[root@pvcent107 ~]# nohup ping www.ibm.com &[1] 3059nohup: appending output to `nohup.out'[root@pvcent107 ~]# ps -ef |grep 3059root 3059 984 0 21:06 pts/3 00:00:00 ping www.ibm.comroot 3067 984 0 21:06 pts/3 00:00:00 grep 3059[root@pvcent107 ~]#2。setsid
nohup 无疑能通过忽略 HUP 信号来使我们的进程避免中途被中断,但如果我们换个角度思考,如果我们的进程不属于接受 HUP 信号的终端的子进程,那么自然也就不会受到 HUP 信号的影响了。setsid 就能帮助我们做到这一点。让我们先来看一下 setsid 的帮助信息:
SETSID(8) Linux Programmer’s Manual SETSID(8) NAME setsid - run a program in a new session SYNOPSIS setsid program [ arg ... ] DESCRIPTION setsid runs a program in a new session.可见 setsid 的使用也是非常方便的,也只需在要处理的命令前加上 setsid 即可。
[root@pvcent107 ~]# setsid ping www.ibm.com[root@pvcent107 ~]# ps -ef |grep www.ibm.comroot 31094 1 0 07:28 ? 00:00:00 ping www.ibm.comroot 31102 29217 0 07:29 pts/4 00:00:00 grep www.ibm.com[root@pvcent107 ~]#值得注意的是,上例中我们的进程 ID(PID)为31094,而它的父 ID(PPID)为1(即为 init 进程 ID),并不是当前终端的进程 ID。请将此例与nohup 例中的父 ID 做比较。
3。&
这里还有一个关于 subshell 的小技巧。我们知道,将一个或多个命名包含在“()”中就能让这些命令在子 shell 中运行中,从而扩展出很多有趣的功能,我们现在要讨论的就是其中之一。
当我们将"&"也放入“()”内之后,我们就会发现所提交的作业并不在作业列表中,也就是说,是无法通过jobs来查看的。让我们来看看为什么这样就能躲过 HUP 信号的影响吧。
[root@pvcent107 ~]# (ping www.ibm.com &)[root@pvcent107 ~]# ps -ef |grep www.ibm.comroot 16270 1 0 14:13 pts/4 00:00:00 ping www.ibm.comroot 16278 15362 0 14:13 pts/4 00:00:00 grep www.ibm.com[root@pvcent107 ~]#从上例中可以看出,新提交的进程的父 ID(PPID)为1(init 进程的 PID),并不是当前终端的进程 ID。因此并不属于当前终端的子进程,从而也就不会受到当前终端的 HUP 信号的影响了。
Linux 中的每个进程都存在于“进程树”中。你可以通过运行 pstree 命令查看进程树。树的根是 init,进程号是 1。每个进程(init 除外)都有一个父进程,一个进程都可以有很多子进程。
所以,假设我要启动一个名为 ls 的进程来列出一个目录。我是不是只要发起一个进程 ls 就好了呢?不是的。
我要做的是,创建一个子进程,这个子进程是我(me)本身的一个克隆,然后这个子进程的“脑子”被吃掉了,变成 ls。
开始是这样的:
然后运行 fork(),生成一个子进程,是我(me)自己的一份克隆:
然后我让该子进程运行 exec("ls"),变成这样:
当 ls 命令结束后,我几乎又变回了我自己:
在这时 ls 其实是一个僵尸进程。这意味着它已经死了,但它还在等我,以防我需要检查它的返回值(使用 wait 系统调用)。一旦我获得了它的返回值,我将再次恢复独自一人的状态。
上文提到的“脑子被吃掉”是什么意思呢?
进程有很多属性:
当你运行 execve 并让另一个程序吃掉你的脑子的时候,实际上几乎所有东西都是相同的! 你们有相同的环境变量、信号处理程序和打开的文件等等。
唯一改变的是,内存、寄存器以及正在运行的程序,这可是件大事。
为何 fork 并非那么耗费资源(写入时复制)
你可能会问:“如果我有一个使用了 2GB 内存的进程,这是否意味着每次我启动一个子进程,所有 2 GB 的内存都要被复制一次?这听起来要耗费很多资源!”
事实上,Linux 为 fork() 调用实现了写时复制copy on write,对于新进程的 2GB 内存来说,就像是“看看旧的进程就好了,是一样的!”。然后,当如果任一进程试图写入内存,此时系统才真正地复制一个内存的副本给该进程。如果两个进程的内存是相同的,就不需要复制了
当子进程终结时,它会通知父进程,并清空自己所占据的内存,并在内核里留下自己的退出信息(exit code,如果顺利运行,为0;如果有错误或异常状况,为>0的整数)。在这个信息里,会解释该进程为什么退出。父进程在得知子进程终结时,有责任对该子进程使用wait系统调用。这个wait函数能从内核中取出子进程的退出信息,并清空该信息在内核中所占据的空间。但是,如果父进程早于子进程终结,子进程就会成为一个孤儿(orphand)进程。孤儿进程会被过继给init进程,init进程也就成了该进程的父进程。init进程负责该子进程终结时调用wait函数。
当然,一个糟糕的程序也完全可能造成子进程的退出信息滞留在内核中的状况(父进程不对子进程调用wait函数),这样的情况下,子进程成为僵尸(zombie)进程。当大量僵尸进程积累时,内存空间会被挤占。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)