一套视频监控系统主要是由前端摄像头,线缆(网线、电源线),交换机,存储(NVR、CVR)、解码以及大屏等设备组成。这些设备组成的视频监控系统,任何一个设备出现问题后都会影响视频监控系统的画面卡顿。
1、摄像头编码传输延时
前端摄像头采集的图像数据在传输时先编码,编码会形成一定的延时,在经过网络传输过程中,也需要消耗的一定的时间,最后摄像头数据经过解码器设备上墙也有一定的延时,这个延时是没法避免的。现在主流的安防一线安防厂家都能把延时时间控制在500ms内。
视频监控系统架构图
2、网线、交换机设备引起的延时
前端摄像头采集的视频流都是实时的,一方面数据需要经过网线传输,传输到交换机后,还要考虑交换机背板带宽、包转换率等性能参数。网线质量和交换机性能不够都会引起前端摄像头的画面延时卡顿。
①网线引起设备卡顿
网线引起的摄像头画面卡顿,主要有2点,第一点就是网线传输距离超过100米,数据传输过远,引起了衰减;另外点就是弱电工程商为了节省施工材料使用劣质的网线,比如使用铜包铝这种线芯,传输过程损耗过大,达不到网络传输性能,引起画面卡顿。一般视频监控系统建议采用无氧铜的线芯的网线。
无氧铜线芯
②交换机性能不足
交换机选型失误导致摄像头画面卡顿的问题也较多,一般一个交换机的实际带宽的理论值为50%-70%,所以一个百兆口的实际带宽为50M-70M,这里我们用70M作为设计依据。单个摄像头的码流=(主码流+子码流),主码流一般是高清画面,用于视频录像和画面实时预览;子码流一般是标清画面显示,用于网传或者视频监控多画面显示,通常为0.5M,现在摄像头的主流编码技术以H.265为主,下面列举常用摄像头码流供大家参考:
IPC 200W=2.5M
IPC 300W=3.5M
IPC 400W=4.5M
下面举一个简单的例子,方便大家更好的理解:
1个交换机上连接了40个H.265 200W像素的摄像头(2+0.5),上联端口的转发率为2.5*40=100M>70M,就需要使用千兆交换机。交换机有1个端口需要是千兆,那就需要选型全千兆交换机,或者上联口必须为千兆口的交换机。
接入层交换机选型
3、解码设备引起的延时
摄像头编码结束后,经过网线、交换机传输后,到达中心平台,需要经过解码器、综合平台进行解码上墙。这个阶段,如果解码设备选型不对,上墙时显示资源不足,也会引起监控画面卡顿。
B21视频综合平台
所以在设计智能化弱电项目的时候也要了解摄像头的数量,然后在了解摄像头编码格式,现在主流的摄像头编码格式主要是H.264和H.265,比如一个前端200W像素H.265编码的摄像头,那么它的带宽就是2M,总共有100个摄像头,那带宽就是200M,对应的解码器的资源也需要200M的带宽。现在一些解码器的设备参数也会明确表示支持几路监控设备上墙解码。比如海康的DS-6904UD支持4路1200W或8路800w,或12路500w或20路300w或者32路1080P在30fps帧率及以下分辨率同时解码。
解码器上墙
总结
摄像头画面延时在实际的智能化弱电工程中经常遇到,因此在智能化弱电工程设计时就要学会选择优质的网线线材,合适的交换机,解码器等设备,这样弱电工程师在去项目现场实施,就不再会出现摄像头画面卡顿问题,项目也会顺利完成验收,为公司创造价值!
我们通常可以基于top命令来查看节点上的资源使用情况,可以带两个参数nodes和pods通过这个命令,分别用于查看节点和pods的资源使用情况,这对于我们快速查看k8s集群以及pod的资源利用率,从而提醒业务或者系统管理人员及时的对集群扩容,调整Pod的资源请求。
下面是这个命令显示的一个常规的输出:
但是这个命令新旧版本的实现上有差异,主要分水岭是从1.9.X版本开始。
kubectl top命令依赖于heapster组件,我们用下面的内容创建heapster.yaml文件:
并运行kubectl apply -f heapster.yaml部署好heapster,就能通过旧版本的kubectl来执行top命令获取到资源利用率。
该版本的实现原理是,从heapster组件中读取收集的监控数据,由于heapster已经是淘汰的版本,这里不做深入的分析了。
新版本已经用metrics server替代了heapster,下面是K8S的监控架构图:
监控架构中包含了指标收集流以及监控流两个部分,这里我们主要讨论的是指标收集部分。
在这里我们有两个指标源:
Metrics Server负责从指标源中抓取数据,它不负责指标数据的持久化,只保留最近的数据(注意:kubectl top命令只用到了kubelet相关的核心指标),与此同时,Metrics Server会通过Aggregated API Servers模式把自己的API暴漏给API Server。
所以从客户端使用视角来看,访问Metrics Server就想访问API Server 一样,而kubectl就是这样的一种客户端,下面是Metrics Server暴漏的API信息:
我们可以通过下面的API来访问Metrics API:
http://127.0.0.1:8080/apis/metrics.k8s.io/v1beta1/nodes
http://127.0.0.1:8080/apis/metrics.k8s.io/v1beta1/nodes/
http://127.0.0.1:8080/apis/metrics.k8s.io/v1beta1/pods
http://127.0.0.1:8080/apis/metrics.k8s.io/v1beta1/namespace//pods/
也可以直接通过 kubectl 命令来访问这些 API,比如:
kubectl get –raw apis/metrics.k8s.io/v1beta1/nodes
kubectl get –raw apis/metrics.k8s.io/v1beta1/pods
kubectl get –raw apis/metrics.k8s.io/v1beta1/nodes/
kubectl get –raw apis/metrics.k8s.io/v1beta1/namespace//pods/
kubelet启动的时候,需要加上下面的参数:
--authentication-token-webhook --authorization-mode=Webhook
温湿度监控在物联网智慧中的应用如下:
1、药品行业:
该行业是一个严谨又竞争异常激烈的行业。在我国加入WTO的承诺下,跨国制药企业正虎视眈眈,包括世界排名前20位的跨国医药企业,已相继在我国抢滩设点。面对日后越发激烈的市场竞争,我们的药品工业需要更多的从品质安全、科学研发、科学管理等方面努力,借助更多仪器设备通过信息化手段提高管理与服务,降低成本,提升市场竞争力。
随着GMP标准在药品行业的普及,药品生产从原料控制到药品销售整个过程将会有科学的 *** 作规则。
解决方法:
东莞纳普电子科技有限公司将为药品工业中与温湿度相关的重要环节提供全面可靠的产品和解决方案,如制药原料的仓储环境监测、药品和药品杀菌灭菌工艺验证、药品运输环境监测、实验室净化车间环境及设备监测等,为提升您的品质而监测。
适合产品:电子/走纸温度记录仪、高温温度记录仪(杀菌)和库房温湿度监测系统等化
2、冷链物流:
生活中常见的疫苗,我们都知道是需要冷藏的,一般储藏温度在2~8℃,有些需要在-18℃冷冻。其实还有更多的生物制品都对储运环境有着严格的要求,如血浆、血液制品、生物制剂等等,有些特殊的生物制品甚至要在-50℃低温下用干冰储运。一旦温度超过限定值,都将对这些生物制品的品质产生非常大的影响。因此这些与生命科学相关的领域,对仪器设备的要求就比其他行业都要高,特别是在运输过程中对的体积有特殊的要求,原因是很多的生物制品样品都是通过昂贵的空运。
解决方法:
东莞纳普电子科技有限公司公司针对生命科学行业的特殊应用,提供全面的温度监测记录产品和环境监测系统及相关解决方案。适合产品:声光报警温湿度记录仪,生产环境温湿度监测、实验室及冰柜温湿度监测等。
3、工电子:
该行业主要面向、高端复合材料、精密微电子、集成芯片、光电元器件等精细化工产品诸如环氧树脂、高端复合材料等,在储存运输过程中,对环境温湿度条件及较剧烈地震动都有特殊要求。如果一些参数控制不当就会造成品质不稳定甚至产生废品。潮湿是电子产品质量的致命敌人,绝大部分电子产品都要求在干燥条件下作业和存放。据统计,全球每年有1/4以上的工业制造不良品与潮湿的危害有关。对于电子工业,潮湿的危害已经成为影响产品质量的主要因素之一。如集成电路、液晶器件、电子发烧友片、作业过程中的电子器件及成品电子等,在高湿度环境下存储时间过长,将对一些焊盘和芯片引脚表面产生氧化导致接触不良发生故障。电子工业产品的生产和产品的存储环境湿度一般应该在40%以下,有些特殊品种还要求更低的温湿度。
化工电子行业的企业应该着重管理原料仓库、生产车间、成品仓库和运输过程的温湿度,为品质的稳定性提供决策依据。我们见过很多传统的管理办法就是:由仓管员或管理人员不定时查看、记录仓库和车间的温湿度值,发现异常情况即使用加温湿或减温湿设备控制仓库、车间的温湿度。这样的管理办法有很多弊端,比较费时间和人力,而且记录的数据因为有人为的因素,数据不是很客观,不太符合现代化企业管理的要求而在物流方面,企业基本没有办法管理运输车辆中的温湿度变化。
解决方法:
为解决此类问题,深入了解市场需求,东莞纳普电子科技有限公司为化工电子行业的客户提供全面的产品和解决方案,如库房温湿度监测报警、电子温湿度记录仪、等。
4、食品工业:
该行业目前在中国总体上还是属于一个管理粗放、劳动密集型的传统行业,但随着经济的发展和人们生活水品的提高,以及社会对食品安全问题的高度关注,就需要利用更加科学的管理方式和技术设备来细化并严格控制食品工业的各个工艺流程。特别是一些生鲜和敏温食品,如速冻调理食品、冷鲜肉、鲜牛奶、酸奶、冰激凌、蔬菜、水果、海鲜、快餐等。这些产品从原料——加工——仓储——运输——货架这一过程中,都需要对温度进行严格的监测记录。其中食品的加工工艺中,与温度紧密相关的杀菌灭菌工艺,更是直接关系到食品安全与否。如罐头食品、香肠、饮料、啤酒等食品的热力灭菌。
5.农业大棚环境远程监控系统由前端部分来完成对环境监测因子的含量的监测与汇总、转换、传输等工作,监测因子包括温度、湿度、光照、土壤温度、土壤湿度、CO2浓度、叶面湿度、露点温度等环境参数,这些监测因子由数据采集终端使用不同的方法进行测量获得一个非常准确的测量数据,此结果通过数据处理转换后经由GPRS网络向在线监测数据平台传输数据,在线监测数据传输平台来实现数据的接收、过滤、存储、处理、统计分析并提供实时数据查询等任务,当温湿度超过设定值的时候,自动开启或者关闭指定设备。整个系统可达到:安全、可靠、准确、实时、全面、快速、高效的将真实的水产养殖环境信息展现在管理人员的面前。
农业大棚环境远程监控系统由三大部分:数据中心、大棚监控点、用户手机、电脑等客户端。
1、数据中心:主要由PC机和上位机软件构成,它实现对数据的接收、存储、显示、数据请求以及曲线显示、报表打印输出等信息管理工作和进行特殊情况的监控中心预警以及通过客户端软件方便地访问实时和历史数据。
2、大棚监控点:实时将现场的水温、光照、溶氧,氨氮,硫化物、亚硝酸盐、ph等数据采集到数据采集终端内,根据实时数据实现采集点现场的自动报警,防止事故的发生。(并预留监控点的控制接口)
3、用户手机、电脑:通过智能手机访问数据中心采集现场实时数据或编辑短信发送到数据采集终端采集现场实时数据。
系统架构图:
农业大棚环境远程监控系统
温湿度监控
温湿度监控
了解更多温度监控系统内容
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)