二次曲面的九种类型如下:
1、柱面:F(x,y)=0(z是全体实数)例如x^2+y^2=R^2圆柱曲面
2、圆柱曲面:方程是2次其次式F(x^2,y^2,z^2)=0例如:x^2/4+y^2/8=z^2(包括椭球面)
3、旋转曲面:f(正负根下(x^2+y^2),z)=0比如:根下x^2+y^2=|y1|,z=z1
4、二次曲面一般式:Ax+By+Cz+Dxy+Eyx+Fzx+Gx+Hy+Iz+J=0
二次曲面包括哪些?
二次曲面有12种。以下是其名称及标准方程。
(1)圆柱面(Cyindrical surface)
x^2+y^2=a^2
(2)椭圆柱面(Elliptic cylinder)
x^2/a^2+y^2/b^2=1
(3)双曲柱面(Hyperbolic cylinder)
x^2/a^2-y^2/b^2=1
(4)抛物柱面(Parabolic cylinder)
y^2-2ax=0
(5)圆锥面(Conical surface)
(x^2+y^2)/a^2-z^2/c^2=0
(6)椭圆锥面(Elliptic cone)
x^2/a^2+y^2/b^2-z^2/c^2=0
(7)球面(Sphherical surface)
x^2+y^2+z^2=a^2
(8)椭球面(Ellipsoid)
x^2/a^2+y^2/b^2+z^2/c^2=1
(9)椭圆抛物面(Elliptic paraboloid)
x^2/a^2+y^2/b^2=z
(10)单叶双曲面(Hyperboloid of one sheet)
x^2/a^2+y^2/b^2-z^2/c^2=1
平面是曲面的一种,平面是曲率为0的曲面,所有的面都可以归类为曲面,常见的曲面还有旋转曲面和二次曲面、直纹面、可展曲面、极小曲面、多面曲面、单侧曲面等。
1、旋转曲面,也称回转曲面,是一类特殊的曲面,它是一条平面曲线绕着它所在的平面上一条固定直线旋转一周所生成的曲面。该固定直线称为旋转轴,该旋转曲线称为母线。曲面和过旋转轴的平面的交线称为经线或子午线,曲面和垂直于旋转轴的平面的交线称为纬线或平行圆。
2、一般说来,直线与二次曲面相交于两个点;如果相交于三个点以上,那么此直线全部在曲面上。这时称此直线为曲面的母线。如果二次曲面被平行平面所截,其截线是二次曲线。通常,我们将三元二次方程所表示的曲面称着二次曲面。平面叫做一次曲面。
3、直纹面可以描述为由移动的直线扫过的一组点。例如,通过保持线的一个点固定而沿着圆移动另一个点来形成锥体。如果通过其每个点都有两条不同的线,那么表面是双重的。双曲抛物面和一张双曲面是双重曲面。
如果曲面方程为r(u,v)=a(u)+v·l(u),其中l(u)为单位向量,则称此曲面为直纹面(ruled surface)。这时v曲线为直线,因此直纹面是由一条条直线所织成,这些直线就称为此直纹面的(直)母线。
4、可展曲面是在其上每一点处高斯曲率为零的曲面。有一个一般性的定理表明:一片具有常数高斯曲率的曲面能够经弯曲(非拉伸、收缩、皱褶或撕裂)而变为任何一片具有相同常数高斯曲率的曲面。
5、在数学中,极小曲面是指平均曲率为零的曲面。举例来说,满足某些约束条件的面积最小的曲面。 物理学中,由最小化面积而得到的极小曲面的实例可以是沾了肥皂液后吹出的肥皂泡。肥皂泡的极薄的表面薄膜称为皂液膜,这是满足周边空气条件和肥皂泡吹制器形状的表面积最小的表面。
参考资料:百度百科-旋转曲面
参考资料:百度百科-二次曲面
参考资料:百度百科-直纹面
参考资料:百度百科-可展曲面
参考资料:百度百科-极小曲面
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)