100银子求助如何遍历读取TuShare的分笔股票数据

100银子求助如何遍历读取TuShare的分笔股票数据,第1张

import tushare as ts

import time

while True:

df = tsget_realtime_quotes('000581') #Single stock symbol

print df[['code','name','price','bid','ask','volume','amount','time']]

timesleep(2)

根据 >

数据处理

Python提供了大量用于数据处理和科学计算的库,像numpy,scipy,pandas等,对于矩阵计算、线性代数等,numpy可以快速计算并得到结果,pandas内置的DataFrame类型可以快速处理各种常见的文件,像CSV,Excel,JSon等,是数据分析的利器,在数据处理中经常使用:

可视化

Python数据可视化库也非常丰富,除了经常使用的matplotlib外,还有许多其他可视化库,像seaborn,pyecharts等,绘制的图形种类更丰富,更漂亮,代码量也更少,非常容易学习,对于日常作图制表来说,是一个非常不错的选择:

机器学习

现在机器学习正火,其实Python里面也有现成的机器学习模块可供学习—scikit-learn,对于常见的机器学习算法,像分类、回归、聚类、降维等,这个模块都有现成的代码可直接使用,非常方便,对于想入门机器学习的朋友来说,这是一个非常不错的选择:

神经网络

神经网络起源应该比较早了,目前在图像领域应用比较广泛,Python也有现成的神经网络模块可供使用,比较有名的就是谷歌开源的tensorflow,可以快速构建神经网络模型,并支持GPU计算,对于科研人员来说,是一个非常不错的选择,当然,除此之外,还有更高级的theano,keras等,使用也非常方便:

财经金融

对于想快速获取股票财经数据的朋友来说,Python也有现成的模块可供使用—tushare,一个免费、开源的财经数据接口包,可以快速获取国内股票数据,而且自动整合了数据爬取、清洗到加工的过程,使用起来非常不错,对于金融分析人员来说,是一个非常不错的工具:

爬虫

Python非常适合做网页爬虫,像常见的urllib,bs4,requests,lxml等模块,对于爬取大部分网页来说非常容易,请求解析于一身,可以快速获取到我们需要的数据,当然,为了提高开发效率,避免重复造轮子,Python也提供了一个非常受欢迎的爬虫框架—scrapy,可定制性更高,用户只需要添加少量代码,便可快速启动爬虫:

游戏开发

对于游戏开发来说,Python也有一个专门的平台—pygame,专门用于游戏开发,对于开发小型游戏来说,这是一个非常不错的选择,摆脱了低级语言的束缚,代码量更少也更易学习,对于游戏感兴趣的朋友来说,这是一个非常不错的选择:

视频下载

对于视频下载来说,Python也有一个下载利器—you-get,可以免费快速的下载优酷、B站、美拍等网站视频,不需要登录,一键you-get就可以下载视频到本地,还支持在线播放功能,除此之外,还可以下载、音频等文件,是一个非常实用的工具:

目前,就分享这8个方便吧,比较实用也比较有趣,当然,还有许多其他方面的,像Web开发、桌面GUI、测试、运维、树莓派等,网上也有相关资料可供参考,感兴趣的朋友可以自己搜一下,希望以上分享的内容能对你有所帮助吧

一 准备环境

1 安装tushare模块包。

pip install tushare

二 注册tushare账号,获取token(目前tushare pro版本必须有token值才能正常访问)

访问>

三 开始python编程

Python代码:

import tushare as ts

#设置token

token='你自己的token'

pro = tspro_api(token)

#获取002242SZ日行数据

pa=prodaily(ts_code='002242SZ', start_date='20200701',end_date='20200716')

# 打印获取数据

print(pa)

运行程序,可见如下打印,002242SZ最近两周的数据都在这里了。

以上就是关于100银子求助如何遍历读取TuShare的分笔股票数据全部的内容,包括:100银子求助如何遍历读取TuShare的分笔股票数据、用Python能做哪些事情、如何利用python抓取美股数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/10083155.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存