上面讲的自旋锁,信号量和互斥锁的实现,都是使用了原子 *** 作指令。由于原子 *** 作会 lock,当线程在多个 CPU 上争抢进入临界区的时候,都会 *** 作那个在多个 CPU 之间共享的数据 lock。CPU 0 *** 作了 lock,为了数据的一致性,CPU 0 的 *** 作会导致其他 CPU 的 L1 中的 lock 变成 invalid,在随后的来自其他 CPU 对 lock 的访问会导致 L1 cache miss(更准确的说是communication cache miss),必须从下一个 level 的 cache 中获取。
这就会使缓存一致性变得很糟,导致性能下降。所以内核提供一种新的同步方式:RCU(读-复制-更新)。
RCU 解决了什么
RCU 是读写锁的高性能版本,它的核心理念是读者访问的同时,写者可以更新访问对象的副本,但写者需要等待所有读者完成访问之后,才能删除老对象。读者没有任何同步开销,而写者的同步开销则取决于使用的写者间同步机制。
RCU 适用于需要频繁的读取数据,而相应修改数据并不多的情景,例如在文件系统中,经常需要查找定位目录,而对目录的修改相对来说并不多,这就是 RCU 发挥作用的最佳场景。
RCU 例子
RCU 常用的接口如下图所示:
为了更好的理解,在剖析 RCU 之前先看一个例子:
#include<linux/kernelh>#include<linux/moduleh>#include<linux/inith>#include<linux/slabh>#include<linux/spinlockh>#include<linux/rcupdateh>#include<linux/kthreadh>#include<linux/delayh>structfoo{inta;structrcu_headrcu;};staticstructfoog_ptr;staticintmyrcu_reader_thread1(voiddata)//读者线程1{structfoop1=NULL;while(1){if(kthread_should_stop())break;msleep(20);rcu_read_lock();mdelay(200);p1=rcu_dereference(g_ptr);if(p1)printk("%s: read a=%d\n",__func__,p1->a);rcu_read_unlock();}return0;}staticintmyrcu_reader_thread2(voiddata)//读者线程2{structfoop2=NULL;while(1){if(kthread_should_stop())break;msleep(30);rcu_read_lock();mdelay(100);p2=rcu_dereference(g_ptr);if(p2)printk("%s: read a=%d\n",__func__,p2->a);rcu_read_unlock();}return0;}staticvoidmyrcu_del(structrcu_headrh)//回收处理 *** 作{structfoop=container_of(rh,structfoo,rcu);printk("%s: a=%d\n",__func__,p->a);kfree(p);}staticintmyrcu_writer_thread(voidp)//写者线程{structfooold;structfoonew_ptr;intvalue=(unsignedlong)p;while(1){if(kthread_should_stop())break;msleep(250);new_ptr=kmalloc(sizeof(structfoo),GFP_KERNEL);old=g_ptr;new_ptr=old;new_ptr->a=value;rcu_assign_pointer(g_ptr,new_ptr);call_rcu(&old->rcu,myrcu_del);printk("%s: write to new %d\n",__func__,value);value++;}return0;}staticstructtask_structreader_thread1;staticstructtask_structreader_thread2;staticstructtask_structwriter_thread;staticint__initmy_test_init(void){intvalue=5;printk("figo: my module init\n");g_ptr=kzalloc(sizeof(structfoo),GFP_KERNEL);reader_thread1=kthread_run(myrcu_reader_thread1,NULL,"rcu_reader1");reader_thread2=kthread_run(myrcu_reader_thread2,NULL,"rcu_reader2");writer_thread=kthread_run(myrcu_writer_thread,(void)(unsignedlong)value,"rcu_writer");return0;}staticvoid__exitmy_test_exit(void){printk("goodbye\n");kthread_stop(reader_thread1);kthread_stop(reader_thread2);kthread_stop(writer_thread);if(g_ptr)kfree(g_ptr);}MODULE_LICENSE("GPL");module_init(my_test_init);module_exit(my_test_exit);
执行结果是:
myrcu_reader_thread2:reada=0myrcu_reader_thread1:reada=0myrcu_reader_thread2:reada=0myrcu_writer_thread:writetonew5myrcu_reader_thread2:reada=5myrcu_reader_thread1:reada=5myrcu_del:a=0
RCU 原理
可以用下面一张图来总结,当写线程 myrcu_writer_thread 写完后,会更新到另外两个读线程 myrcu_reader_thread1 和 myrcu_reader_thread2。读线程像是订阅者,一旦写线程对临界区有更新,写线程就像发布者一样通知到订阅者那里,如下图所示。
写者在拷贝副本修改后进行 update 时,首先把旧的临界资源数据移除(Removal);然后把旧的数据进行回收(Reclamation)。结合 API 实现就是,首先使用 rcu_assign_pointer 来移除旧的指针指向,指向更新后的临界资源;然后使用 synchronize_rcu 或 call_rcu 来启动 Reclaimer,对旧的临界资源进行回收(其中 synchronize_rcu 表示同步等待回收,call_rcu 表示异步回收)。
为了确保没有读者正在访问要回收的临界资源,Reclaimer 需要等待所有的读者退出临界区,这个等待的时间叫做宽限期(Grace Period)。
Grace Period
中间的**部分代表的就是 Grace Period,中文叫做宽限期,从 Removal 到 Reclamation,中间就隔了一个宽限期,只有当宽限期结束后,才会触发回收的工作。宽限期的结束代表着 Reader 都已经退出了临界区,因此回收工作也就是安全的 *** 作了。
宽限期是否结束,与 CPU 的执行状态检测有关,也就是检测静止状态 Quiescent Status。
Quiescent Status
Quiescent Status,用于描述 CPU 的执行状态。当某个 CPU 正在访问 RCU 保护的临界区时,认为是活动的状态,而当它离开了临界区后,则认为它是静止的状态。当所有的 CPU 都至少经历过一次 Quiescent Status 后,宽限期将结束并触发回收工作。
因为 rcu_read_lock 和 rcu_read_unlock 分别是关闭抢占和打开抢占,如下所示:
staticinlinevoid__rcu_read_lock(void){preempt_disable();}
staticinlinevoid__rcu_read_unlock(void){preempt_enable();}
所以发生抢占,就说明不在 rcu_read_lock 和 rcu_read_unlock 之间,即已经完成访问或者还未开始访问。
Linux 同步方式的总结
资料免费领
学习直通车
Linux内核设计与实现 十、内核同步方法
手把手教Linux驱动5-自旋锁、信号量、互斥体概述
== 基础概念: ==
并发 :多个执行单元同时进行或多个执行单元微观串行执行,宏观并行执行
竞态 :并发的执行单元对共享资源(硬件资源和软件上的全局变量)的访问而导致的竟态状态。
临界资源 :多个进程访问的资源
临界区 :多个进程访问的代码段
== 并发场合: ==
1、单CPU之间进程间的并发 :时间片轮转,调度进程。 A进程访问打印机,时间片用完,OS调度B进程访问打印机。
2、单cpu上进程和中断之间并发 :CPU必须停止当前进程的执行中断;
3、多cpu之间
4、单CPU上中断之间的并发
== 使用偏向: ==
==信号量用于进程之间的同步,进程在信号量保护的临界区代码里面是可以睡眠的(需要进行进程调度),这是与自旋锁最大的区别。==
信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是共享内存方式的进程间通信。本质上,信号量是一个计数器,它用来记录对某个资源(如共享内存)的存取状况。它负责协调各个进程,以保证他们能够正确、合理的使用公共资源。它和spin lock最大的不同之处就是:无法获取信号量的进程可以睡眠,因此会导致系统调度。
1、==用于进程与进程之间的同步==
2、==允许多个进程进入临界区代码执行,临界区代码允许睡眠;==
3、信号量本质是==基于调度器的==,在UP和SMP下没有区别;进程获取不到信号量将陷入休眠,并让出CPU;
4、不支持进程和中断之间的同步
5、==进程调度也是会消耗系统资源的,如果一个int型共享变量就需要使用信号量,将极大的浪费系统资源==
6、信号量可以用于多个线程,用于资源的计数(有多种状态)
==信号量加锁以及解锁过程:==
sema_init(&sp->dead_sem, 0); / 初始化 /
down(&sema);
临界区代码
up(&sema);
==信号量定义:==
==信号量初始化:==
==dowm函数实现:==
==up函数实现:==
信号量一般可以用来标记可用资源的个数。
举2个生活中的例子:
==dowm函数实现原理解析:==
(1)down
判断sem->count是否 > 0,大于0则说明系统资源够用,分配一个给该进程,否则进入__down(sem);
(2)__down
调用__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);其中TASK_UNINTERRUPTIBLE=2代表进入睡眠,且不可以打断;MAX_SCHEDULE_TIMEOUT休眠最长LONG_MAX时间;
(3)list_add_tail(&waiterlist, &sem->wait_list);
把当前进程加入到sem->wait_list中;
(3)先解锁后加锁;
进入__down_common前已经加锁了,先把解锁,调用schedule_timeout(timeout),当waiterup=1后跳出for循环;退出函数之前再加锁;
Linux内核ARM构架中原子变量的底层实现研究
rk3288 原子 *** 作和原子位 *** 作
原子变量适用于只共享一个int型变量;
1、原子 *** 作是指不被打断的 *** 作,即它是最小的执行单位。
2、最简单的原子 *** 作就是一条条的汇编指令(不包括一些伪指令,伪指令会被汇编器解释成多条汇编指令)
==常见函数:==
==以atomic_inc为例介绍实现过程==
在Linux内核文件archarmincludeasmatomich中。 执行atomic_read、atomic_set这些 *** 作都只需要一条汇编指令,所以它们本身就是不可打断的。 需要特别研究的是atomic_inc、atomic_dec这类读出、修改、写回的函数。
所以atomic_add的原型是下面这个宏:
atomic_add等效于:
result(%0) tmp(%1) (v->counter)(%2) (&v->counter)(%3) i(%4)
注意:根据内联汇编的语法,result、tmp、&v->counter对应的数据都放在了寄存器中 *** 作。如果出现上下文切换,切换机制会做寄存器上下文保护。
(1)ldrex %0, [%3]
意思是将&v->counter指向的数据放入result中,并且(分别在Local monitor和Global monitor中)设置独占标志。
(2)add %0, %0, %4
result = result + i
(3)strex %1, %0, [%3]
意思是将result保存到&v->counter指向的内存中, 此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。
(4) teq %1, #0
测试strex是否成功(tmp == 0 ??)
(5)bne 1b
如果发现strex失败,从(1)再次执行。
Spinlock 是内核中提供的一种比较常见的锁机制,==自旋锁是“原地等待”的方式解决资源冲突的==,即,一个线程获取了一个自旋锁后,另外一个线程期望获取该自旋锁,获取不到,只能够原地“打转”(忙等待)。由于自旋锁的这个忙等待的特性,注定了它使用场景上的限制 —— 自旋锁不应该被长时间的持有(消耗 CPU 资源),一般应用在==中断上下文==。
1、spinlock是一种死等机制
2、信号量可以允许多个执行单元进入,spinlock不行,一次只能允许一个执行单元获取锁,并且进入临界区,其他执行单元都是在门口不断的死等
3、由于不休眠,因此spinlock可以应用在中断上下文中;
4、由于spinlock死等的特性,因此临界区执行代码尽可能的短;
==spinlock加锁以及解锁过程:==
spin_lock(&devices_lock);
临界区代码
spin_unlock(&devices_lock);
==spinlock初始化==
==进程和进程之间同步==
==本地软中断之间同步==
==本地硬中断之间同步==
==本地硬中断之间同步并且保存本地中断状态==
==尝试获取锁==
== arch_spinlock_t结构体定义如下: ==
== arch_spin_lock的实现如下: ==
lockval(%0) newval(%1) tmp(%2) &lock->slock(%3) 1 << TICKET_SHIFT(%4)
(1)ldrex %0, [%3]
把lock->slock的值赋值给lockval;并且(分别在Local monitor和Global monitor中)设置独占标志。
(2)add %1, %0, %4
newval =lockval +(1<<16); 相当于next+1;
(3)strex %2, %1, [%3]
newval =lockval +(1<<16); 相当于next+1;
意思是将newval保存到 &lock->slock指向的内存中, 此时 Exclusive monitors会发挥作用,将保存是否成功的标志放入tmp中。
(4) teq %2, #0
测试strex是否成功
(5)bne 1b
如果发现strex失败,从(1)再次执行。
通过上面的分析,可知关键在于strex的 *** 作是否成功的判断上。而这个就归功于ARM的Exclusive monitors和ldrex/strex指令的机制。
(6)while (lockvalticketsnext != lockvalticketsowner)
如何lockvaltickets的next和owner是否相等。相同则跳出while循环,否则在循环内等待判断;
(7)wfe()和smp_mb() 最终调用#define barrier() asm volatile ("": : :"memory")
阻止编译器重排,保证编译程序时在优化屏障之前的指令不会在优化屏障之后执行。
== arch_spin_unlock的实现如下: ==
退出锁时:ticketsowner++
== 出现死锁的情况: ==
1、拥有自旋锁的进程A在内核态阻塞了,内核调度B进程,碰巧B进程也要获得自旋锁,此时B只能自旋转。 而此时抢占已经关闭,(单核)不会调度A进程了,B永远自旋,产生死锁。
2、进程A拥有自旋锁,中断到来,CPU执行中断函数,中断处理函数,中断处理函数需要获得自旋锁,访问共享资源,此时无法获得锁,只能自旋,产生死锁。
== 如何避免死锁: ==
1、如果中断处理函数中也要获得自旋锁,那么驱动程序需要在拥有自旋锁时禁止中断;
2、自旋锁必须在可能的最短时间内拥有
3、避免某个获得锁的函数调用其他同样试图获取这个锁的函数,否则代码就会死锁;不论是信号量还是自旋锁,都不允许锁拥有者第二次获得这个锁,如果试图这么做,系统将挂起;
4、锁的顺序规则(a) 按同样的顺序获得锁;b) 如果必须获得一个局部锁和一个属于内核更中心位置的锁,则应该首先获取自己的局部锁 ;c) 如果我们拥有信号量和自旋锁的组合,则必须首先获得信号量;在拥有自旋锁时调用down(可导致休眠)是个严重的错误的;)
== rw(read/write)spinlock: ==
加锁逻辑:
1、假设临界区内没有任何的thread,这个时候任何的读线程和写线程都可以键入
2、假设临界区内有一个读线程,这时候信赖的read线程可以任意进入,但是写线程不能进入;
3、假设临界区有一个写线程,这时候任何的读、写线程都不可以进入;
4、假设临界区内有一个或者多个读线程,写线程不可以进入临界区,但是写线程也无法阻止后续的读线程继续进去,要等到临界区所有的读线程都结束了,才可以进入,可见:==rw(read/write)spinlock更加有利于读线程;==
== seqlock(顺序锁): ==
加锁逻辑:
1、假设临界区内没有任何的thread,这个时候任何的读线程和写线程都可以键入
2、假设临界区内没有写线程的情况下,read线程可以任意进入;
3、假设临界区有一个写线程,这时候任何的读、写线程都不可以进入;
4、假设临界区内只有read线程的情况下,写线程可以理解执行,不会等待,可见:==seqlock(顺序锁)更加有利于写线程;==
读写速度 : CPU > 一级缓存 > 二级缓存 > 内存 ,因此某一个CPU0的lock修改了,其他的CPU的lock就会失效;那么其他CPU就会依次去L1 L2和主存中读取lock值,一旦其他CPU去读取了主存,就存在系统性能降低的风险;
mutex用于互斥 *** 作。
互斥体只能用于一个线程,资源只有两种状态(占用或者空闲)
1、mutex的语义相对于信号量要简单轻便一些,在锁争用激烈的测试场景下,mutex比信号量执行速度更快,可扩展
性更好,
2、另外mutex数据结构的定义比信号量小;、
3、同一时刻只有一个线程可以持有mutex
4、不允许递归地加锁和解锁
5、当进程持有mutex时,进程不可以退出。
• mutex必须使用官方API来初始化。
• mutex可以睡眠,所以不允许在中断处理程序或者中断下半部中使用,例如tasklet、定时器等
==常见 *** 作:==
struct mutex mutex_1;
mutex_init(&mutex_1);
mutex_lock(&mutex_1)
临界区代码;
mutex_unlock(&mutex_1)
==常见函数:==
=
本文将介绍在Linux系统中, 数据包是如何一步一步从网卡传到进程手中的 以及 数据包是如何一步一步从应用程序到网卡并最终发送出去的 。
如果英文没有问题,强烈建议阅读后面参考里的文章,里面介绍的更详细。
本文只讨论以太网的物理网卡,不涉及虚拟设备,并且以一个UDP包的接收过程作为示例
网卡需要有驱动才能工作,驱动是加载到内核中的模块,负责衔接网卡和内核的网络模块,驱动在加载的时候将自己注册进网络模块,当相应的网卡收到数据包时,网络模块会调用相应的驱动程序处理数据。
下图展示了数据包(packet)如何进入内存,并被内核的网络模块开始处理:
软中断会触发内核网络模块中的软中断处理函数,后续流程如下
由于是UDP包,所以第一步会进入IP层,然后一级一级的函数往下调:
应用层一般有两种方式接收数据,一种是recvfrom函数阻塞在那里等着数据来,这种情况下当socket收到通知后,recvfrom就会被唤醒,然后读取接收队列的数据;另一种是通过epoll或者select监听相应的socket,当收到通知后,再调用recvfrom函数去读取接收队列的数据。两种情况都能正常的接收到相应的数据包。
了解数据包的接收流程有助于帮助我们搞清楚我们可以在哪些地方监控和修改数据包,哪些情况下数据包可能被丢弃,为我们处理网络问题提供了一些参考,同时了解netfilter中相应钩子的位置,对于了解iptables的用法有一定的帮助,同时也会帮助我们后续更好的理解Linux下的网络虚拟设备。
ndo_start_xmit会绑定到具体网卡驱动的相应函数,到这步之后,就归网卡驱动管了,不同的网卡驱动有不同的处理方式,这里不做详细介绍,其大概流程如下:
在网卡驱动发送数据包过程中,会有一些地方需要和netdevice子系统打交道,比如网卡的队列满了,需要告诉上层不要再发了,等队列有空闲的时候,再通知上层接着发数据。
以上就是关于一文搞懂 , Linux内核—— 同步管理(下)全部的内容,包括:一文搞懂 , Linux内核—— 同步管理(下)、linux内核同步问题、Linux网络 - 数据包在内核中接收和发送的过程(转)等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)