Android 开发也要懂得数据结构 - HashMap源码

Android 开发也要懂得数据结构 - HashMap源码,第1张

概述文章目录1.HashMap特点2.HashMap的继承关系3.HashMap常用方法3.1构造方法3.2放入元素put(Kkey,Vvalue)3.3HashMap核心putVal(inthash,Kkey,Vvalue,booleanonlyIfAbsent,booleanevict)3.4扩容resize()3.5查找元素get(Objectkey)3.6移除元素remove(

文章目录1.HashMap特点2.HashMap 的继承关系3.HashMap常用方法3.1 构造方法3.2 放入元素 put(K key, V value)3.3 HashMap核心 putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict)3.4 扩容 resize()3.5 查找元素 get(Object key)3.6 移除元素 remove(Object key)3.7 清空 clear()3.8 长度 size()3.9 获取所有元素的集合 entrySet()3.10 获取key的集合 keySet()

HashMap不仅是AndroID开发中常用的数据结构,面试也是高频出现,所以了解一下源码还是非常必要的。本文章使用的是 JDK1.8 ,不同版本源码有差异。文章里面的图片来自 极客时间,王争老师的数据结构与算法课。极客时间 - 数据结构与算法1.HashMap特点Collection 是集合,有数组(ArrayList)查找快增删慢,有链表(linkList)增删快查找慢,Map 就是数组与链表的结合体,结合了两的优点。HashMap 的数据关系是 key 到 value 的映射关系,key 是唯一的,value 是可以重复的。HashMap 的 Hash , 是因为 key 是需要计算哈希值,这种数组就是散列表。HashMap 可以理解为 key计算后的位置用 数组 保存,数组里面的内容放着 链表 ,链表的节点是 key-value 一个个保存起来,查找的时候,快速找到数组中对应的位置,然后遍历链表。HashMap 非线程安全,可以用 Hashtable。HashMap 数据是无序的,需要有序的使用 linkedHashMap。2.HashMap 的继承关系HashMap继承于 Map,而linkedHashMap 是继承于HashMap。3.HashMap常用方法3.1 构造方法默认构造方法,只初始化了扩容因数,0.75,就是HashMap的数组容量使用了75%,就要进行扩容 *** 作了,注释还说明初始容量为16。
    /**     * Constructs an empty <tt>HashMap</tt> with the default initial capacity     * (16) and the default load factor (0.75).     */    public HashMap() {        this.loadFactor = DEFAulT_LOAD_FACTOR; // all other fIElds defaulted    }
自定义初始容量和扩容因子的构造方法,initialCapacity为初始容量,最大不超过2的30次方,loadFactor为扩容因子,必需为大于0的浮点数。
    /**     * The maximum capacity, used if a higher value is implicitly specifIEd     * by either of the constructors with arguments.     * MUST be a power of two <= 1<<30.     */    static final int MAXIMUM_CAPACITY = 1 << 30;    /**     * Constructs an empty <tt>HashMap</tt> with the specifIEd initial     * capacity and load factor.     *     * @param  initialCapacity the initial capacity     * @param  loadFactor      the load factor     * @throws IllegalArgumentException if the initial capacity is negative     *         or the load factor is nonpositive     */    public HashMap(int initialCapacity, float loadFactor) {        //小于0走异常处理。        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal initial capacity: " +                                               initialCapacity);        //最大不能超过1左移30位,也就是2的30次方,非常大的数。          if (initialCapacity > MAXIMUM_CAPACITY)            initialCapacity = MAXIMUM_CAPACITY;        //如果扩容因子小于0,或者不是浮点数,报异常处理。        if (loadFactor <= 0 || float.isNaN(loadFactor))            throw new IllegalArgumentException("Illegal load factor: " +                                               loadFactor);        this.loadFactor = loadFactor;        this.threshold = tableSizefor(initialCapacity);    }
传入Map的构造方法,默认扩容因子也是0.75,可以将Map转化为HashMap。
    /**     * Constructs a new <tt>HashMap</tt> with the same mapPings as the     * specifIEd <tt>Map</tt>.  The <tt>HashMap</tt> is created with     * default load factor (0.75) and an initial capacity sufficIEnt to     * hold the mapPings in the specifIEd <tt>Map</tt>.     *     * @param   m the map whose mapPings are to be placed in this map     * @throws  NullPointerException if the specifIEd map is null     */    public HashMap(Map<? extends K, ? extends V> m) {        this.loadFactor = DEFAulT_LOAD_FACTOR;        putMapEntrIEs(m, false);    }
3.2 放入元素 put(K key, V value)首先看 hash(Object key) 方法,就是判断元素存放在数组的位置,如果空就返回 0,否则 key 的哈希值用临时变量 h 保存,再和 h 无符号右移16位的结果(>>>是无符号右移,高位补0),做异或 *** 作(^是异或),算出存放在数组的位置,这种哈希计算过的数组其实就是 散列表。如果计算出来的结果一样,也就是哈希碰撞,那数据后面会用链表存放。下图就是散列表。

putVal(hash(key), key, value, false, true),方法有五个参数,第一个是计算的位置,第二个是 key , 第三个是value , 第四个是否修改已存在的值,最后一个参数看意思是创建表格。如果key 为空,null 是无法计算哈希值的,就返回0,所以 HashMap 是可以放一个 key 为空的元素的。
    /**     * Associates the specifIEd value with the specifIEd key in this map.     * If the map prevIoUsly contained a mapPing for the key, the old     * value is replaced.     *     * @param key key with which the specifIEd value is to be associated     * @param value value to be associated with the specifIEd key     * @return the prevIoUs value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapPing for <tt>key</tt>.     *         (A <tt>null</tt> return can also indicate that the map     *         prevIoUsly associated <tt>null</tt> with <tt>key</tt>.)     */    public V put(K key, V value) {        return putVal(hash(key), key, value, false, true);    }    /**     * Computes key.hashCode() and spreads (XORs) higher bits of hash     * to lower.  Because the table uses power-of-two masking, sets of     * hashes that vary only in bits above the current mask will     * always collIDe. (Among kNown examples are sets of float keys     * holding consecutive whole numbers in small tables.)  So we     * apply a transform that spreads the impact of higher bits     * downward. There is a tradeoff between speed, utility, and     * quality of bit-spreading. Because many common sets of hashes     * are already reasonably distributed (so don't benefit from     * spreading), and because we use trees to handle large sets of     * collisions in bins, we just XOR some shifted bits in the     * cheapest possible way to reduce systematic lossage, as well as     * to incorporate impact of the highest bits that would otherwise     * never be used in index calculations because of table bounds.     */    static final int hash(Object key) {        int h;        //如果key为空,就返回0        //否者key的哈希码 异或 key无符号右移16位的结果        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);    }
Node<K,V> 节点类,我们可以看到,是单链表结构,还重写了equals(Object o)。
    /**     * Basic hash bin node, used for most entrIEs.  (See below for     * TreeNode subclass, and in linkedHashMap for its Entry subclass.)     */    static class Node<K,V> implements Map.Entry<K,V> {        final int hash;        final K key;        V value;        //单链表结构        Node<K,V> next;        Node(int hash, K key, V value, Node<K,V> next) {            this.hash = hash;            this.key = key;            this.value = value;            this.next = next;        }        public final K getKey()        { return key; }        public final V getValue()      { return value; }        public final String toString() { return key + "=" + value; }        public final int hashCode() {            return Objects.hashCode(key) ^ Objects.hashCode(value);        }        public final V setValue(V newValue) {            V oldValue = value;            value = newValue;            return oldValue;        }		//重写equals        public final boolean equals(Object o) {            if (o == this)                return true;            if (o instanceof Map.Entry) {                Map.Entry<?,?> e = (Map.Entry<?,?>)o;                //对比key和value                if (Objects.equals(key, e.getKey()) &&                    Objects.equals(value, e.getValue()))                    return true;            }            return false;        }    }
3.3 HashMap核心 putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict)

这个方法看到Node<K,V>[],HashMap的结构就能理解了吧。

HashMap为了解决散列冲突,就用了链表法。

存放数据的链表,在长度在 8以下 的时候,是 链表 存储,8以上 或者数组长度大于64时就红黑树存储。

由于方法细节太多,直接写注释一步步好理解。

   /**     * The bin count threshold for using a tree rather than List for a     * bin.  Bins are converted to trees when adding an element to a     * bin with at least this many nodes. The value must be greater     * than 2 and should be at least 8 to mesh with assumptions in     * tree removal about conversion back to plain bins upon     * shrinkage.     */    static final int TREEIFY_THRESHolD = 8;    /**     * Implements Map.put and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to put     * @param onlyIfAbsent if true, don't change existing value     * @param evict if false, the table is in creation mode.     * @return prevIoUs value, or null if none     */    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                   boolean evict) {        //分别是散列表,节点,散列表长度,索引位置        Node<K,V>[] tab; Node<K,V> p; int n, i;        //如果散列表为空或者散列表长度为0        if ((tab = table) == null || (n = tab.length) == 0)        	//resize()是创建哈希表,长度为16,并且将长度赋值给n            n = (tab = resize()).length;        //找到hash值在当前哈希表中的位置,该位置的节点赋值给p,且判断该位置是否为空        if ((p = tab[i = (n - 1) & hash]) == null)        	//如果为空就把这个元素放在这个位置            tab[i] = newNode(hash, key, value, null);        else {            Node<K,V> e; K k;            //如果hash值相同,key也相同            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                //将节点p赋值给e                              e = p;            //如果p是树节点            else if (p instanceof TreeNode)            	//创建一个树节点赋值给e                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);            else {            	//链表节点,就遍历链表                for (int binCount = 0; ; ++binCount) {                	//将p的下一节点赋值给e,且为空                    if ((e = p.next) == null) {                    	//找到链表尾部,插入新的节点                        p.next = newNode(hash, key, value, null);                        //如果链表的长度大于8的时候                        if (binCount >= TREEIFY_THRESHolD - 1) // -1 for 1st                            //链表转树结构                            treeifyBin(tab, hash);                        break;                    }                    //遍历到的位置已经有元素了,这里就是遍历链表一直循环next,直到为空停止                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        break;                    p = e;                }            }            //如果当前节点不为空,前面的 *** 作除了最后一个else,其他就是找到已存在的节点            if (e != null) { // existing mapPing for key            	//当前节点的值赋值给oldValue                 V oldValue = e.value;                //如果不修改值,或者oldValue 为空(存储value为空)                if (!onlyIfAbsent || oldValue == null)                	//就修改当前节点的值                    e.value = value;                afterNodeAccess(e);                //修改值,在这return,不再增加数据的长度                return oldValue;            }        }        ++modCount;        //添加好元素,长度+1        if (++size > threshold)            //扩容 *** 作            resize();        afterNodeInsertion(evict);        return null;    }        /**     * Replaces all linked nodes in bin at index for given hash unless     * table is too small, in which case resizes instead.     */    final voID treeifyBin(Node<K,V>[] tab, int hash) {        int n, index; Node<K,V> e;        //如果哈希表为空,或者哈希表长度小于64,优先扩容,而不是转为红黑树        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)            //扩容            resize();        //否则判断不为空就转为树节点        else if ((e = tab[index = (n - 1) & hash]) != null) {            TreeNode<K,V> hd = null, tl = null;            do {                TreeNode<K,V> p = replacementTreeNode(e, null);                if (tl == null)                    hd = p;                else {                    p.prev = tl;                    tl.next = p;                }                tl = p;            } while ((e = e.next) != null);            if ((tab[index] = hd) != null)                hd.treeify(tab);        }    }
3.4 扩容 resize()扩容为原来的2倍大小,扩容完,需要重写计算位置,重写排位置。
    /**     * Initializes or doubles table size.  If null, allocates in     * accord with initial capacity target held in fIEld threshold.     * Otherwise, because we are using power-of-two expansion, the     * elements from each bin must either stay at same index, or move     * with a power of two offset in the new table.     *     * @return the table     */    final Node<K,V>[] resize() {        Node<K,V>[] oldTab = table;        int oldCap = (oldTab == null) ? 0 : oldTab.length;        int oldThr = threshold;        int newCap, newThr = 0;        if (oldCap > 0) {        	//最大不能超过Integer.MAX_VALUE            if (oldCap >= MAXIMUM_CAPACITY) {                threshold = Integer.MAX_VALUE;                return oldTab;            }            //扩容为原来的2倍            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&                     oldCap >= DEFAulT_INITIAL_CAPACITY)                newThr = oldThr << 1; // double threshold        }        else if (oldThr > 0) // initial capacity was placed in threshold            newCap = oldThr;        else {               // zero initial threshold signifIEs using defaults            //创建默认大小,长度16            newCap = DEFAulT_INITIAL_CAPACITY;            //阈值0.75 * 16            newThr = (int)(DEFAulT_LOAD_FACTOR * DEFAulT_INITIAL_CAPACITY);        }        if (newThr == 0) {            float ft = (float)newCap * loadFactor;            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                      (int)ft : Integer.MAX_VALUE);        }        threshold = newThr;        @SuppressWarnings({"rawtypes","unchecked"})            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];        table = newTab;        if (oldTab != null) {            for (int j = 0; j < oldCap; ++j) {                Node<K,V> e;                if ((e = oldTab[j]) != null) {                    oldTab[j] = null;                    if (e.next == null)                        newTab[e.hash & (newCap - 1)] = e;                    else if (e instanceof TreeNode)                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                    else { // preserve order                        Node<K,V> lohead = null, loTail = null;                        Node<K,V> hihead = null, hiTail = null;                        Node<K,V> next;                        do {                            next = e.next;                            if ((e.hash & oldCap) == 0) {                                if (loTail == null)                                    lohead = e;                                else                                    loTail.next = e;                                loTail = e;                            }                            else {                                if (hiTail == null)                                    hihead = e;                                else                                    hiTail.next = e;                                hiTail = e;                            }                        } while ((e = next) != null);                        if (loTail != null) {                            loTail.next = null;                            newTab[j] = lohead;                        }                        if (hiTail != null) {                            hiTail.next = null;                            newTab[j + oldCap] = hihead;                        }                    }                }            }        }        return newTab;    }
3.5 查找元素 get(Object key)查找比较简单,key为空,就是hash为0,有就返回,没有就返回null。key 不为空,找到就返回 value,找不到就返回null。
    /**     * Returns the value to which the specifIEd key is mapped,     * or {@code null} if this map contains no mapPing for the key.     *     * <p>More formally, if this map contains a mapPing from a key     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :     * key.equals(k))}, then this method returns {@code v}; otherwise     * it returns {@code null}.  (There can be at most one such mapPing.)     *     * <p>A return value of {@code null} does not <i>necessarily</i>     * indicate that the map contains no mapPing for the key; it's also     * possible that the map explicitly maps the key to {@code null}.     * The {@link #containsKey containsKey} operation may be used to     * distinguish these two cases.     *     * @see #put(Object, Object)     */    public V get(Object key) {        Node<K,V> e;        return (e = getNode(hash(key), key)) == null ? null : e.value;    }    /**     * Implements Map.get and related methods     *     * @param hash hash for key     * @param key the key     * @return the node, or null if none     */    final Node<K,V> getNode(int hash, Object key) {        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;        if ((tab = table) != null && (n = tab.length) > 0 &&            (first = tab[(n - 1) & hash]) != null) {            if (first.hash == hash && // always check first node                ((k = first.key) == key || (key != null && key.equals(k))))                return first;            if ((e = first.next) != null) {                if (first instanceof TreeNode)                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);                do {                    if (e.hash == hash &&                        ((k = e.key) == key || (key != null && key.equals(k))))                        return e;                } while ((e = e.next) != null);            }        }        return null;    }
3.6 移除元素 remove(Object key)
    /**     * Removes the mapPing for the specifIEd key from this map if present.     *     * @param  key key whose mapPing is to be removed from the map     * @return the prevIoUs value associated with <tt>key</tt>, or     *         <tt>null</tt> if there was no mapPing for <tt>key</tt>.     *         (A <tt>null</tt> return can also indicate that the map     *         prevIoUsly associated <tt>null</tt> with <tt>key</tt>.)     */    public V remove(Object key) {        Node<K,V> e;        return (e = removeNode(hash(key), key, null, false, true)) == null ?            null : e.value;    }    /**     * Implements Map.remove and related methods     *     * @param hash hash for key     * @param key the key     * @param value the value to match if matchValue, else ignored     * @param matchValue if true only remove if value is equal     * @param movable if false do not move other nodes while removing     * @return the node, or null if none     */    final Node<K,V> removeNode(int hash, Object key, Object value,                               boolean matchValue, boolean movable) {        Node<K,V>[] tab; Node<K,V> p; int n, index;        //如果散列表不为空且hash对应位置有元素,找到赋值给p        if ((tab = table) != null && (n = tab.length) > 0 &&            (p = tab[index = (n - 1) & hash]) != null) {            Node<K,V> node = null, e; K k; V v;            //如果p就是要找的元素,赋值给node            if (p.hash == hash &&                ((k = p.key) == key || (key != null && key.equals(k))))                node = p;            //如果p不是要找的元素            else if ((e = p.next) != null) {            	//如果是树节点,遍历树,找到节点赋值给node                if (p instanceof TreeNode)                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);                else {                	//如果是链表,就不停的next,找节点赋值给node                    do {                        if (e.hash == hash &&                            ((k = e.key) == key ||                             (key != null && key.equals(k)))) {                            node = e;                            break;                        }                        p = e;                    } while ((e = e.next) != null);                }            }            //如果找的节点不为空,且value值符合            if (node != null && (!matchValue || (v = node.value) == value ||                                 (value != null && value.equals(v)))) {                //树节点就用树的删除                if (node instanceof TreeNode)                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);                //链表只有一个的情况next为空,相当于置空                else if (node == p)                    tab[index] = node.next;                //链表后面有元素,直接指向next                else                    p.next = node.next;                ++modCount;                --size;                afterNodeRemoval(node);                return node;            }        }        return null;    }
3.7 清空 clear()直接遍历散列表,置空,引用断开GC时自己会回收。
    /**     * Removes all of the mapPings from this map.     * The map will be empty after this call returns.     */    public voID clear() {        Node<K,V>[] tab;        modCount++;        if ((tab = table) != null && size > 0) {            size = 0;            for (int i = 0; i < tab.length; ++i)                tab[i] = null;        }    }
3.8 长度 size()这个长度是元素的数量。
    /**     * Returns the number of key-value mapPings in this map.     *     * @return the number of key-value mapPings in this map     */    public int size() {        return size;    }
3.9 获取所有元素的集合 entrySet()这个方法可以获取所有 Entry
    /**     * Returns a {@link Set} vIEw of the mapPings contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modifIEd     * while an iteration over the set is in progress (except through     * the iterator's own <tt>remove</tt> operation, or through the     * <tt>setValue</tt> operation on a map entry returned by the     * iterator) the results of the iteration are undefined.  The set     * supports element removal, which removes the corresponding     * mapPing from the map, via the <tt>Iterator.remove</tt>,     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and     * <tt>clear</tt> operations.  It does not support the     * <tt>add</tt> or <tt>addAll</tt> operations.     *     * @return a set vIEw of the mapPings contained in this map     */    public Set<Map.Entry<K,V>> entrySet() {        Set<Map.Entry<K,V>> es;        return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;    }
遍历使用方法
HashMap<String, String> hashMap = new HashMap<>();Iterator iterator = hashMap.entrySet().iterator();while (iterator.hasNext()) {    Map.Entry<String, String> entry = (Map.Entry<String, String>) iterator.next();    String key = entry.getKey();    String value = entry.getValue();}
3.10 获取key的集合 keySet()
    /**     * Returns a {@link Set} vIEw of the keys contained in this map.     * The set is backed by the map, so changes to the map are     * reflected in the set, and vice-versa.  If the map is modifIEd     * while an iteration over the set is in progress (except through     * the iterator's own <tt>remove</tt> operation), the results of     * the iteration are undefined.  The set supports element removal,     * which removes the corresponding mapPing from the map, via the     * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,     * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>     * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>     * operations.     *     * @return a set vIEw of the keys contained in this map     */    public Set<K> keySet() {        Set<K> ks = keySet;        if (ks == null) {            ks = new KeySet();            keySet = ks;        }        return ks;    }
使用
HashMap<String, String> hashMap = new HashMap<>();Iterator iterator = hashMap.keySet().iterator();while (iterator.hasNext()){    String key = (String) iterator.next();    String value = hashMap.get(key);}

最后,如果有错误,欢迎大家指出,我会继续学习修改,谢谢~~

总结

以上是内存溢出为你收集整理的Android 开发也要懂得数据结构 - HashMap源码全部内容,希望文章能够帮你解决Android 开发也要懂得数据结构 - HashMap源码所遇到的程序开发问题。

如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/1056666.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-25
下一篇 2022-05-25

发表评论

登录后才能评论

评论列表(0条)

保存