两个或更多向量的集合
下一个定理的证明类似于例3的解.给出了细节
在本节末尾.
Theorem 7: Characterization of linearly Dependent SetsAn indexed set S = {v1,…,vp} of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact,if S is linearly dependent and v1 ≠ 0,then some vj (with j > 1) is a linear
combination of the preceding vectors,v1,vj-1.
警告:定理7并未说明线性相关集合中的每个向量都是a
前面向量的线性组合.线性相关集合中的向量可以
不能成为其他向量的线性组合.见练习题3.
用于这种块的适当元素是什么?
通常< blockquote>使用(如上所述),但我觉得这是错误的 – 它不一定是引用.我可以使用< div>,但我想知道是否有一个合适的语义元素.
解决方法 我想这取决于你想要如何构建内容.我可以考虑多个选项而不是使用blockquote:>使用figure(和标题的figcaption):
<figure> <figcaption>Theorem 7: Characterization of linearly Dependent Sets</figcaption> <p> An indexed set S = {v1,...,vp} of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact,if S is linearly dependent and v1 ≠ 0,then some vj (with j > 1) is a linear combination of the preceding vectors,v1,vj-1. </p></figure>
>使用部分:
<section> <h3>Theorem 7: Characterization of linearly Dependent Sets</h3> <p> An indexed set S = {v1,vj-1. </p></section>
>使用dfn(与上述相结合):
<section> <dfn title="Characterization of linearly Dependent Sets"> Theorem 7: Characterization of linearly Dependent Sets </dfn> <p> An indexed set S = {v1,vj-1. </p></section>
虽然图/ figcaption看起来是一个简单的选择(它本来是我的第一个选择),但在这种特殊情况下它可能不是最好的.根据documentation(我突出显示的大胆部分):
The figure element represents a unit of content,optionally with a caption,that is self-contained,that is typically referenced as a single unit from the main flow of the document,and that can be moved away from the main flow of the document without affecting the document’s meaning.
在定理的情况下,将图移离主流实际上会影响文档的含义.所以我可能会选择最后一个选项(dfn部分).
无论如何,无论你的最终选择是什么,最好添加属性role =“deFinition”和aria-labelledby来指定该部分实际上是definition of a term or concept并指向定理标题.
例如:
<section> <dfn ID="theorem7" title="Characterization of linearly Dependent Sets"> Theorem 7: Characterization of linearly Dependent Sets </dfn> <p role="deFinition" aria-labelledby="theorem7"> An indexed set S = {v1,vj-1. </p></section>总结
以上是内存溢出为你收集整理的html – 数学文本中的词条,定理等的正确元素?全部内容,希望文章能够帮你解决html – 数学文本中的词条,定理等的正确元素?所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)