在上一篇文章中,我们分析了AndroID系统进程间通信机制Binder中的Server在启动过程使用Service Manager的addService接口把自己添加到Service Manager守护过程中接受管理。在这一篇文章中,我们将深入到Binder驱动程序源代码去分析ClIEnt是如何通过Service Manager的getService接口中来获得Server远程接口的。ClIEnt只有获得了Server的远程接口之后,才能进一步调用Server提供的服务。
这里,我们仍然是通过AndroID系统中自带的多媒体播放器为例子来说明ClIEnt是如何通过IServiceManager::getService接口来获得MediaPlayerService这个Server的远程接口的。假设计读者已经阅读过前面三篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路、浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路和Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,即假设Service Manager和MediaPlayerService已经启动完毕,Service Manager现在等待ClIEnt的请求。
这里,我们要举例子说明的ClIEnt便是MediaPlayer了,它声明和实现在frameworks/base/include/media/mediaplayer.h和frameworks/base/media/libmedia/mediaplayer.cpp文件中。MediaPlayer继承于IMediaDeathNotifIEr类,这个类声明和实现在frameworks/base/include/media/IMediaDeathNotifIEr.h和frameworks/base/media/libmedia//IMediaDeathNotifIEr.cpp文件中,里面有一个静态成员函数getMeIDaPlayerService,它通过IServiceManager::getService接口来获得MediaPlayerService的远程接口。
在介绍IMediaDeathNotifIEr::getMeIDaPlayerService函数之前,我们先了解一下这个函数的目标。看来前面浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路这篇文章的读者知道,我们在获取Service Manager远程接口时,最终是获得了一个BpServiceManager对象的IServiceManager接口。类似地,我们要获得MediaPlayerService的远程接口,实际上就是要获得一个称为BpMediaPlayerService对象的IMediaPlayerService接口。现在,我们就先来看一下BpMediaPlayerService的类图:
从这个类图可以看到,BpMediaPlayerService继承于BpInterface<IMediaPlayerService>类,即BpMediaPlayerService继承了IMediaPlayerService类和BpRefBase类,这两个类又分别继续了RefBase类。BpRefBase类有一个成员变量mRemote,它的类型为IBinder,实际是一个BpBinder对象。BpBinder类使用了IPCThreadState类来与Binder驱动程序进行交互,而IPCThreadState类有一个成员变量mProcess,它的类型为Processstate,IPCThreadState类借助Processstate类来打开Binder设备文件/dev/binder,因此,它可以和Binder驱动程序进行交互。
BpMediaPlayerService的构造函数有一个参数impl,它的类型为const sp<IBinder>&,从上面的描述中,这个实际上就是一个BpBinder对象。这样,要创建一个BpMediaPlayerService对象,首先就要有一个BpBinder对象。再来看BpBinder类的构造函数,它有一个参数handle,类型为int32_t,这个参数的意义就是请求MediaPlayerService这个远程接口的进程对MediaPlayerService这个Binder实体的引用了。因此,获取MediaPlayerService这个远程接口的本质问题就变为从Service Manager中获得MediaPlayerService的一个句柄了。
现在,我们就来看一下IMediaDeathNotifIEr::getMeIDaPlayerService的实现:
// establish binder interface to MediaPlayerService /*static*/const sp<IMediaPlayerService>& IMediaDeathNotifIEr::getMediaPlayerService() { LOGV("getMediaPlayerService"); Mutex::autolock _l(sServiceLock); if (sMediaPlayerService.get() == 0) { sp<IServiceManager> sm = defaultServiceManager(); sp<IBinder> binder; do { binder = sm->getService(String16("media.player")); if (binder != 0) { break; } LOGW("Media player service not published,waiting..."); usleep(500000); // 0.5 s } while(true); if (sDeathNotifIEr == NulL) { sDeathNotifIEr = new DeathNotifIEr(); } binder->linkToDeath(sDeathNotifIEr); sMediaPlayerService = interface_cast<IMediaPlayerService>(binder); } LOGE_IF(sMediaPlayerService == 0,"no media player service!?"); return sMediaPlayerService; }
函数首先通过defaultServiceManager函数来获得Service Manager的远程接口,实际上就是获得BpServiceManager的IServiceManager接口,具体可以参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。总的来说,这里的语句:
sp<IServiceManager> sm = defaultServiceManager();
相当于是:
sp<IServiceManager> sm = new BpServiceManager(new BpBinder(0));
这里的0表示Service Manager的远程接口的句柄值是0。
接下去的while循环是通过sm->getService接口来不断尝试获得名称为“media.player”的Service,即MediaPlayerService。为什么要通过这无穷循环来得MediaPlayerService呢?因为这时候MediaPlayerService可能还没有启动起来,所以这里如果发现取回来的binder接口为NulL,就睡眠0.5秒,然后再尝试获取,这是获取Service接口的标准做法。
我们来看一下BpServiceManager::getService的实现:
class BpServiceManager : public BpInterface<IServiceManager> { ...... virtual sp<IBinder> getService(const String16& name) const { unsigned n; for (n = 0; n < 5; n++){ sp<IBinder> svc = checkService(name); if (svc != NulL) return svc; LOGI("Waiting for service %s...\n",String8(name).string()); sleep(1); } return NulL; } virtual sp<IBinder> checkService( const String16& name) const { Parcel data,reply; data.writeInterfacetoken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); remote()->transact(CHECK_SERVICE_TRANSACTION,data,&reply); return reply.readStrongBinder(); } ...... };
BpServiceManager::getService通过BpServiceManager::checkService执行 *** 作。
在BpServiceManager::checkService中,首先是通过Parcel::writeInterfacetoken往data写入一个RPC头,这个我们在AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文已经介绍过了,就是写往data里面写入了一个整数和一个字符串“androID.os.IServiceManager”, Service Manager来处理CHECK_SERVICE_TRANSACTION请求之前,会先验证一下这个RPC头,看看是否正确。接着再往data写入一个字符串name,这里就是“media.player”了。回忆一下AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析这篇文章,那里已经往Service Manager中注册了一个名字为“media.player”的MediaPlayerService。
这里的remote()返回的是一个BpBinder,具体可以参考浅谈AndroID系统进程间通信(IPC)机制Binder中的Server和ClIEnt获得Service Manager接口之路一文,于是,就进行到BpBinder::transact函数了:
status_t BpBinder::transact( uint32_t code,const Parcel& data,Parcel* reply,uint32_t flags) { // Once a binder has dIEd,it will never come back to life. if (mAlive) { status_t status = IPCThreadState::self()->transact( mHandle,code,reply,flags); if (status == DEAD_OBJECT) mAlive = 0; return status; } return DEAD_OBJECT; }
这里的mHandle = 0,code = CHECK_SERVICE_TRANSACTION,flags = 0。
这里再进入到IPCThread::transact函数中:
status_t IPCThreadState::transact(int32_t handle,uint32_t code,uint32_t flags) { status_t err = data.errorCheck(); flags |= TF_ACCEPT_FDS; IF_LOG_TRANSACTIONS() { textoutput::Bundle _b(alog); alog << "BC_TRANSACTION thr " << (voID*)pthread_self() << " / hand " << handle << " / code " << TypeCode(code) << ": " << indent << data << dedent << endl; } if (err == NO_ERROR) { LOG_ONEWAY(">>>> SEND from pID %d uID %d %s",getpID(),getuID(),(flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION,flags,handle,NulL); } if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { #if 0 if (code == 4) { // relayout LOGI(">>>>>> CALliNG transaction 4"); } else { LOGI(">>>>>> CALliNG transaction %d",code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout LOGI("<<<<<< RETURNING transaction 4"); } else { LOGI("<<<<<< RETURNING transaction %d",code); } #endif IF_LOG_TRANSACTIONS() { textoutput::Bundle _b(alog); alog << "BR_REPLY thr " << (voID*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(NulL,NulL); } return err; }
首先是调用函数writeTransactionData写入将要传输的数据到IPCThreadState的成员变量mOut中去:
status_t IPCThreadState::writeTransactionData(int32_t cmd,uint32_t binderFlags,int32_t handle,status_t* statusBuffer) { binder_transaction_data tr; tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr.data_size = data.ipcdataSize(); tr.data.ptr.buffer = data.ipcdata(); tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = statusBuffer; tr.offsets_size = 0; tr.data.ptr.offsets = NulL; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr,sizeof(tr)); return NO_ERROR; }
结构体binder_transaction_data在上一篇文章Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析已经介绍过,这里不再累述,这个结构体是用来描述要传输的参数的内容的。这里着重描述一下将要传输的参数tr里面的内容,handle = 0,code = CHECK_SERVICE_TRANSACTION,cmd = BC_TRANSACTION,data里面的数据分别为:
writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); writeString16("androID.os.IServiceManager"); writeString16("media.player");
这是在BpServiceManager::checkService函数里面写进去的,其中前两个是RPC头,Service Manager在收到这个请求时会验证这两个参数是否正确,这点前面也提到了。IPCThread->getStrictModePolicy默认返回0,STRICT_MODE_PENALTY_GATHER定义为:
// Note: must be kept in sync with androID/os/StrictMode.java's PENALTY_GATHER
#define STRICT_MODE_PENALTY_GATHER 0x100
我们不关心这个参数的含义,这不会影响我们分析下面的源代码,有兴趣的读者可以研究一下。这里要注意的是,要传输的参数不包含有Binder对象,因此tr.offsets_size = 0。要传输的参数最后写入到IPCThreadState的成员变量mOut中,包括cmd和tr两个数据。
回到IPCThread::transact函数中,由于(flags & TF_ONE_WAY) == 0为true,即这是一个同步请求,并且reply != NulL,
最终调用:
err = waitForResponse(reply);
进入到waitForResponse函数中:
status_t IPCThreadState::waitForResponse(Parcel *reply,status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; case BR_DEAD_REPLY: err = DEAD_OBJECT; goto finish; case BR_Failed_REPLY: err = Failed_TRANSACTION; goto finish; case BR_ACQUIRE_RESulT: { LOG_ASSERT(acquireResult != NulL,"Unexpected brACQUIRE_RESulT"); const int32_t result = mIn.readInt32(); if (!acquireResult) continue; *acquireResult = result ? NO_ERROR : INVALID_OPERATION; } goto finish; case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr,sizeof(tr)); LOG_ASSERT(err == NO_ERROR,"Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcsetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),tr.data_size,reinterpret_cast<const size_t*>(tr.data.ptr.offsets),tr.offsets_size/sizeof(size_t),freeBuffer,this); } else { err = *static_cast<const status_t*>(tr.data.ptr.buffer); freeBuffer(NulL,reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),this); } } else { freeBuffer(NulL,this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; }
这个函数通过IPCThreadState::talkWithDriver与驱动程序进行交互:
status_t IPCThreadState::talkWithDriver(bool doReceive) { LOG_ASSERT(mProcess->mDriverFD >= 0,"Binder driver is not opened"); binder_write_read bwr; // Is the read buffer empty? const bool needRead = mIn.dataposition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (long unsigned int)mOut.data(); // This is what we'll read. if (doReceive && needRead) { bwr.read_size = mIn.dataCapacity(); bwr.read_buffer = (long unsigned int)mIn.data(); } else { bwr.read_size = 0; } ...... // Return immediately if there is nothing to do. if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { ...... #if defined(HAVE_ANDROID_OS) if (ioctl(mProcess->mDriverFD,BINDER_WRITE_READ,&bwr) >= 0) err = NO_ERROR; else err = -errno; #else err = INVALID_OPERATION; #endif ...... } while (err == -EINTR); ...... if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0,bwr.write_consumed); else mOut.setDataSize(0); } if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataposition(0); } ...... return NO_ERROR; } return err; }
这里的needRead为true,因此,bwr.read_size大于0;outAvail也大于0,因此,bwr.write_size也大于0。函数最后通过:
ioctl(mProcess->mDriverFD,&bwr)
进入到Binder驱动程序的binder_ioctl函数中。注意,这里的mProcess->mDriverFD是在我们前面调用defaultServiceManager函数获得Service Manager远程接口时,打开的设备文件/dev/binder的文件描述符,mProcess是ipcsThreadState的成员变量。
Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_WRITE_READ命令相关的逻辑:
static long binder_ioctl(struct file *filp,unsigned int cmd,unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; unsigned int size = _IOC_SIZE(cmd); voID __user *ubuf = (voID __user *)arg; /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n",proc->pID,current->pID,cmd,arg);*/ ret = wait_event_interruptible(binder_user_error_wait,binder_stop_on_user_error < 2); if (ret) return ret; mutex_lock(&binder_lock); thread = binder_get_thread(proc); if (thread == NulL) { ret = -ENOMEM; goto err; } switch (cmd) { case BINDER_WRITE_READ: { struct binder_write_read bwr; if (size != sizeof(struct binder_write_read)) { ret = -EINVAL; goto err; } if (copy_from_user(&bwr,ubuf,sizeof(bwr))) { ret = -EFAulT; goto err; } if (binder_deBUG_mask & BINDER_DEBUG_READ_WRITE) printk(KERN_INFO "binder: %d:%d write %ld at %08lx,read %ld at %08lx\n",thread->pID,bwr.write_size,bwr.write_buffer,bwr.read_size,bwr.read_buffer); if (bwr.write_size > 0) { ret = binder_thread_write(proc,thread,(voID __user *)bwr.write_buffer,&bwr.write_consumed); if (ret < 0) { bwr.read_consumed = 0; if (copy_to_user(ubuf,&bwr,sizeof(bwr))) ret = -EFAulT; goto err; } } if (bwr.read_size > 0) { ret = binder_thread_read(proc,(voID __user *)bwr.read_buffer,&bwr.read_consumed,filp->f_flags & O_NONBLOCK); if (!List_empty(&proc->todo)) wake_up_interruptible(&proc->wait); if (ret < 0) { if (copy_to_user(ubuf,sizeof(bwr))) ret = -EFAulT; goto err; } } if (binder_deBUG_mask & BINDER_DEBUG_READ_WRITE) printk(KERN_INFO "binder: %d:%d wrote %ld of %ld,read return %ld of %ld\n",bwr.write_consumed,bwr.read_consumed,bwr.read_size); if (copy_to_user(ubuf,sizeof(bwr))) { ret = -EFAulT; goto err; } break; } ...... default: ret = -EINVAL; goto err; } ret = 0; err: ...... return ret; }
这里的filp->private_data的值是在defaultServiceManager函数创建Processstate对象时,在Processstate构造函数通过open文件 *** 作函数打开设备文件/dev/binder时设置好的,它表示的是调用open函数打开设备文件/dev/binder的进程上下文信息,这里将它取出来保存在proc本地变量中。
这里的thread本地变量表示当前线程上下文信息,通过binder_get_thread函数获得。在前面执行Processstate构造函数时,也会通过ioctl文件 *** 作函数进入到这个函数,那是第一次进入到binder_ioctl这里,因此,调用binder_get_thread时,表示当前进程上下文信息的proc变量还没有关于当前线程的上下文信息,因此,会为proc创建一个表示当前线程上下文信息的thread,会保存在proc->threads表示的红黑树结构中。这里调用binder_get_thread就可以直接从proc找到并返回了。
进入到BINDER_WRITE_READ相关的逻辑。先看看BINDER_WRITE_READ的定义:
#define BINDER_WRITE_READ _IOWR('b',1,struct binder_write_read)
这里可以看出,BINDER_WRITE_READ命令的参数类型为struct binder_write_read:
struct binder_write_read { signed long write_size; /* bytes to write */ signed long write_consumed; /* bytes consumed by driver */ unsigned long write_buffer; signed long read_size; /* bytes to read */ signed long read_consumed; /* bytes consumed by driver */ unsigned long read_buffer; };
这个结构体的含义可以参考浅谈Service Manager成为AndroID进程间通信(IPC)机制Binder守护进程之路一文。这里首先是通过copy_from_user函数把用户传进来的参数的内容拷贝到本地变量bwr中。
从上面的调用过程,我们知道,这里bwr.write_size是大于0的,因此进入到binder_thread_write函数中,我们只关注BC_TRANSACTION相关的逻辑:
int binder_thread_write(struct binder_proc *proc,struct binder_thread *thread,voID __user *buffer,int size,signed long *consumed) { uint32_t cmd; voID __user *ptr = buffer + *consumed; voID __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { if (get_user(cmd,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { binder_stats.bc[_IOC_NR(cmd)]++; proc->stats.bc[_IOC_NR(cmd)]++; thread->stats.bc[_IOC_NR(cmd)]++; } switch (cmd) { ...... case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr,ptr,sizeof(tr))) return -EFAulT; ptr += sizeof(tr); binder_transaction(proc,&tr,cmd == BC_REPLY); break; } ...... default: printk(KERN_ERR "binder: %d:%d unkNown command %d\n",cmd); return -EINVAL; } *consumed = ptr - buffer; } return 0; }
这里再次把用户传出来的参数拷贝到本地变量tr中,tr的类型为struct binder_transaction_data,这个就是前面我们在IPCThreadState::writeTransactionData写入的内容了。
接着进入到binder_transaction函数中,不相关的代码我们忽略掉:
static voID binder_transaction(struct binder_proc *proc,struct binder_transaction_data *tr,int reply) { struct binder_transaction *t; struct binder_work *tcomplete; size_t *offp,*off_end; struct binder_proc *target_proc; struct binder_thread *target_thread = NulL; struct binder_node *target_node = NulL; struct List_head *target_List; wait_queue_head_t *target_wait; struct binder_transaction *in_reply_to = NulL; struct binder_transaction_log_entry *e; uint32_t return_error; ....... if (reply) { ...... } else { if (tr->target.handle) { ...... } else { target_node = binder_context_mgr_node; if (target_node == NulL) { return_error = BR_DEAD_REPLY; goto err_no_context_mgr_node; } } ...... target_proc = target_node->proc; if (target_proc == NulL) { return_error = BR_DEAD_REPLY; goto err_dead_binder; } if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) { ...... } } if (target_thread) { ...... } else { target_List = &target_proc->todo; target_wait = &target_proc->wait; } ...... /* Todo: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t),GFP_KERNEL); if (t == NulL) { return_error = BR_Failed_REPLY; goto err_alloc_t_Failed; } binder_stats.obj_created[BINDER_STAT_TRANSACTION]++; tcomplete = kzalloc(sizeof(*tcomplete),GFP_KERNEL); if (tcomplete == NulL) { return_error = BR_Failed_REPLY; goto err_alloc_tcomplete_Failed; } binder_stats.obj_created[BINDER_STAT_TRANSACTION_COMPLETE]++; t->deBUG_ID = ++binder_last_ID; ...... if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NulL; t->sender_euID = proc->tsk->cred->euID; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc,tr->data_size,tr->offsets_size,!reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NulL) { return_error = BR_Failed_REPLY; goto err_binder_alloc_buf_Failed; } t->buffer->allow_user_free = 0; t->buffer->deBUG_ID = t->deBUG_ID; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node,NulL); offp = (size_t *)(t->buffer->data + AliGN(tr->data_size,sizeof(voID *))); if (copy_from_user(t->buffer->data,tr->data.ptr.buffer,tr->data_size)) { ...... return_error = BR_Failed_REPLY; goto err_copy_data_Failed; } ...... if (reply) { ...... } else if (!(t->flags & TF_ONE_WAY)) { BUG_ON(t->buffer->async_transaction != 0); t->need_reply = 1; t->from_parent = thread->transaction_stack; thread->transaction_stack = t; } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; List_add_tail(&t->work.entry,target_List); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; List_add_tail(&tcomplete->entry,&thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... }
注意,这里的参数reply = 0,表示这是一个BC_TRANSACTION命令。
前面我们提到,传给驱动程序的handle值为0,即这里的tr->target.handle = 0,表示请求的目标Binder对象是Service Manager,因此有:
target_node = binder_context_mgr_node; target_proc = target_node->proc; target_List = &target_proc->todo; target_wait = &target_proc->wait;
其中binder_context_mgr_node是在Service Manager通知Binder驱动程序它是守护过程时创建的。
接着创建一个待完成事项tcomplete,它的类型为struct binder_work,这是等一会要保存在当前线程的todo队列去的,表示当前线程有一个待完成的事务。紧跟着创建一个待处理事务t,它的类型为struct binder_transaction,这是等一会要存在到Service Manager的todo队列去的,表示Service Manager当前有一个事务需要处理。同时,这个待处理事务t也要存放在当前线程的待完成事务transaction_stack列表中去:
t->from_parent = thread->transaction_stack;
thread->transaction_stack = t;
这样表明当前线程还有事务要处理。
继续往下看,就是分别把tcomplete和t放在当前线程thread和Service Manager进程的todo队列去了:
t->work.type = BINDER_WORK_TRANSACTION; List_add_tail(&t->work.entry,target_List); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; List_add_tail(&tcomplete->entry,&thread->todo);
最后,Service Manager有事情可做了,就要唤醒它了:
wake_up_interruptible(target_wait);
前面我们提到,此时Service Manager正在等待ClIEnt的请求,也就是Service Manager此时正在进入到Binder驱动程序的binder_thread_read函数中,并且休眠在target->wait上,具体参考浅谈Service Manager成为AndroID进程间通信(IPC)机制Binder守护进程之路一文。
这里,我们暂时忽略Service Manager被唤醒之后的情景,继续看当前线程的执行。
函数binder_transaction执行完成之后,就一路返回到binder_ioctl函数里去了。函数binder_ioctl从binder_thread_write函数调用处返回后,发现bwr.read_size大于0,于是就进入到binder_thread_read函数去了:
static int binder_thread_read(struct binder_proc *proc,signed long *consumed,int non_block) { voID __user *ptr = buffer + *consumed; voID __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NulL && List_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... } else { if (non_block) { if (!binder_has_thread_work(thread)) ret = -EAGAIN; } else ret = wait_event_interruptible(thread->wait,binder_has_thread_work(thread)); } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NulL; if (!List_empty(&thread->todo)) w = List_first_entry(&thread->todo,struct binder_work,entry); else if (!List_empty(&proc->todo) && wait_for_proc_work) w = List_first_entry(&proc->todo,entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } if (end - ptr < sizeof(tr) + 4) break; switch (w->type) { ...... case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); binder_stat_br(proc,cmd); if (binder_deBUG_mask & BINDER_DEBUG_TRANSACTION_COMPLETE) printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n",thread->pID); List_del(&w->entry); kfree(w); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++; } break; ...... } if (!t) continue; ...... } done: ...... return 0; }
函数首先是写入一个 *** 作码BR_NOOP到用户传进来的缓冲区中去。
回忆一下上面的binder_transaction函数,这里的thread->transaction_stack != NulL,并且thread->todo也不为空,所以线程不会进入休眠状态。
进入while循环中,首先是从thread->todo队列中取回待处理事项w,w的类型为BINDER_WORK_TRANSACTION_COMPLETE,这也是在binder_transaction函数里面设置的。对BINDER_WORK_TRANSACTION_COMPLETE的处理也很简单,只是把一个 *** 作码BR_TRANSACTION_COMPLETE写回到用户传进来的缓冲区中去。这时候,用户传进来的缓冲区就包含两个 *** 作码了,分别是BR_NOOP和BINDER_WORK_TRANSACTION_COMPLETE。
binder_thread_read执行完之后,返回到binder_ioctl函数中,将 *** 作结果写回到用户空间中去:
if (copy_to_user(ubuf,sizeof(bwr))) { ret = -EFAulT; goto err; }
最后就返回到IPCThreadState::talkWithDriver函数中了。
IPCThreadState::talkWithDriver函数从下面语句:
ioctl(mProcess->mDriverFD,&bwr)
返回后,首先是清空之前写入Binder驱动程序的内容:
if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0,bwr.write_consumed); else mOut.setDataSize(0); }
接着是设置从Binder驱动程序读取的内容:
if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataposition(0); }
然后就返回到IPCThreadState::waitForResponse去了。IPCThreadState::waitForResponse函数的处理也很简单,就是处理刚才从Binder驱动程序读入内容了。从前面的分析中,我们知道,从Binder驱动程序读入的内容就是两个整数了,分别是BR_NOOP和BR_TRANSACTION_COMPLETE。对BR_NOOP的处理很简单,正如它的名字所示,什么也不做;而对BR_TRANSACTION_COMPLETE的处理,就分情况了,如果这个请求是异步的,那个整个BC_TRANSACTION *** 作就完成了,如果这个请求是同步的,即要等待回复的,也就是reply不为空,那么还要继续通过IPCThreadState::talkWithDriver进入到Binder驱动程序中去等待BC_TRANSACTION *** 作的处理结果。
这里属于后一种情况,于是再次通过IPCThreadState::talkWithDriver进入到Binder驱动程序的binder_ioctl函数中。不过这一次在binder_ioctl函数中,bwr.write_size等于0,而bwr.read_size大于0,于是再次进入到binder_thread_read函数中。这时候thread->transaction_stack仍然不为NulL,不过thread->todo队列已经为空了,因为前面我们已经处理过thread->todo队列的内容了,于是就通过下面语句:
ret = wait_event_interruptible(thread->wait,binder_has_thread_work(thread));
进入休眠状态了,等待Service Manager的唤醒。
现在,我们终于可以回到Service Manager被唤醒之后的过程了。前面我们说过,Service Manager此时正在binder_thread_read函数中休眠中:
static int binder_thread_read(struct binder_proc *proc,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NulL && List_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... if (non_block) { if (!binder_has_proc_work(proc,thread)) ret = -EAGAIN; } else ret = wait_event_interruptible_exclusive(proc->wait,binder_has_proc_work(proc,thread)); } else { ...... } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NulL; if (!List_empty(&thread->todo)) w = List_first_entry(&thread->todo,entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } if (end - ptr < sizeof(tr) + 4) break; switch (w->type) { case BINDER_WORK_TRANSACTION: { t = container_of(w,struct binder_transaction,work); } break; ...... } if (!t) continue; BUG_ON(t->buffer == NulL); if (t->buffer->target_node) { struct binder_node *target_node = t->buffer->target_node; tr.target.ptr = target_node->ptr; tr.cookie = target_node->cookie; t->saved_priority = task_nice(current); if (t->priority < target_node->min_priority && !(t->flags & TF_ONE_WAY)) binder_set_nice(t->priority); else if (!(t->flags & TF_ONE_WAY) || t->saved_priority > target_node->min_priority) binder_set_nice(target_node->min_priority); cmd = BR_TRANSACTION; } else { ...... } tr.code = t->code; tr.flags = t->flags; tr.sender_euID = t->sender_euID; if (t->from) { struct task_struct *sender = t->from->proc->tsk; tr.sender_pID = task_tgID_nr_ns(sender,current->nsproxy->pID_ns); } else { ...... } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (voID *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + AliGN(t->buffer->data_size,sizeof(voID *)); if (put_user(cmd,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); if (copy_to_user(ptr,sizeof(tr))) return -EFAulT; ptr += sizeof(tr); ...... List_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; } else { ...... } break; } done: *consumed = ptr - buffer; ...... return 0; }
这里就是从语句中唤醒了:
ret = wait_event_interruptible_exclusive(proc->wait,thread));
Service Manager唤醒过来看,继续往下执行,进入到while循环中。首先是从proc->todo中取回待处理事项w。这个事项w的类型是BINDER_WORK_TRANSACTION,这是上面调用binder_transaction的时候设置的,于是通过w得到待处理事务t:
t = container_of(w,work);
接下来的内容,就把cmd和t->buffer的内容拷贝到用户传进来的缓冲区去了,这里就是Service Manager从用户空间传进来的缓冲区了:
if (put_user(cmd,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); if (copy_to_user(ptr,sizeof(tr))) return -EFAulT; ptr += sizeof(tr);
注意,这里先是把t->buffer的内容拷贝到本地变量tr中,再拷贝到用户空间缓冲区去。关于t->buffer内容的拷贝,请参考AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文,它的一个关键地方是Binder驱动程序和Service Manager守护进程共享了同一个物理内存的内容,拷贝的只是这个物理内存在用户空间的虚拟地址回去:
tr.data.ptr.buffer = (voID *)t->buffer->data + proc->user_buffer_offset;
tr.data.ptr.offsets = tr.data.ptr.buffer + AliGN(t->buffer->data_size,sizeof(voID *));
对于Binder驱动程序这次 *** 作来说,这个事项就算是处理完了,就要从todo队列中删除了:
List_del(&t->work.entry);
紧接着,还不放删除这个事务,因为它还要等待Service Manager处理完成后,再进一步处理,因此,放在thread->transaction_stack队列中:
t->to_parent = thread->transaction_stack;
t->to_thread = thread;
thread->transaction_stack = t;
还要注意的一个地方是,上面写入的cmd = BR_TRANSACTION,告诉Service Manager守护进程,它要做什么事情,后面我们会看到相应的分析。
这样,binder_thread_read函数就处理完了,回到binder_ioctl函数中,同样是 *** 作结果写回到用户空间的缓冲区中去:
if (copy_to_user(ubuf,sizeof(bwr))) { ret = -EFAulT; goto err; }
最后,就返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数去了:
voID binder_loop(struct binder_state *bs,binder_handler func) { int res; struct binder_write_read bwr; unsigned readbuf[32]; bwr.write_size = 0; bwr.write_consumed = 0; bwr.write_buffer = 0; readbuf[0] = BC_ENTER_LOOPER; binder_write(bs,readbuf,sizeof(unsigned)); for (;;) { bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (unsigned) readbuf; res = ioctl(bs->fd,&bwr); if (res < 0) { LOGE("binder_loop: ioctl Failed (%s)\n",strerror(errno)); break; } res = binder_parse(bs,func); if (res == 0) { LOGE("binder_loop: unexpected reply?!\n"); break; } if (res < 0) { LOGE("binder_loop: io error %d %s\n",res,strerror(errno)); break; } } }
这里就是从下面的语句:
res = ioctl(bs->fd,&bwr);
返回来了。接着就进入binder_parse函数处理从Binder驱动程序里面读取出来的数据:
int binder_parse(struct binder_state *bs,struct binder_io *bio,uint32_t *ptr,uint32_t size,binder_handler func) { int r = 1; uint32_t *end = ptr + (size / 4); while (ptr < end) { uint32_t cmd = *ptr++; switch(cmd) { ...... case BR_TRANSACTION: { struct binder_txn *txn = (voID *) ptr; ...... if (func) { unsigned rdata[256/4]; struct binder_io msg; struct binder_io reply; int res; bio_init(&reply,rdata,sizeof(rdata),4); bio_init_from_txn(&msg,txn); res = func(bs,txn,&msg,&reply); binder_send_reply(bs,&reply,txn->data,res); } ptr += sizeof(*txn) / sizeof(uint32_t); break; } ...... default: LOGE("parse: OOPS %d\n",cmd); return -1; } } return r; }
前面我们说过,Binder驱动程序写入到用户空间的缓冲区中的cmd为BR_TRANSACTION,因此,这里我们只关注BR_TRANSACTION相关的逻辑。
这里用到的两个数据结构struct binder_txn和struct binder_io可以参考前面一篇文章AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,这里就不复述了。
接着往下看,函数调bio_init来初始化reply变量:
voID bio_init(struct binder_io *bio,voID *data,uint32_t maxdata,uint32_t maxoffs) { uint32_t n = maxoffs * sizeof(uint32_t); if (n > maxdata) { bio->flags = BIO_F_OVERFLOW; bio->data_avail = 0; bio->offs_avail = 0; return; } bio->data = bio->data0 = data + n; bio->offs = bio->offs0 = data; bio->data_avail = maxdata - n; bio->offs_avail = maxoffs; bio->flags = 0; }
接着又调用bio_init_from_txn来初始化msg变量:
voID bio_init_from_txn(struct binder_io *bio,struct binder_txn *txn) { bio->data = bio->data0 = txn->data; bio->offs = bio->offs0 = txn->offs; bio->data_avail = txn->data_size; bio->offs_avail = txn->offs_size / 4; bio->flags = BIO_F_SHARED; }
最后,真正进行处理的函数是从参数中传进来的函数指针func,这里就是定义在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函数:
int svcmgr_handler(struct binder_state *bs,struct binder_txn *txn,struct binder_io *msg,struct binder_io *reply) { struct svcinfo *si; uint16_t *s; unsigned len; voID *ptr; uint32_t strict_policy; // LOGI("target=%p code=%d pID=%d uID=%d\n",// txn->target,txn->code,txn->sender_pID,txn->sender_euID); if (txn->target != svcmgr_handle) return -1; // Equivalent to Parcel::enforceInterface(),reading the RPC // header with the strict mode policy mask and the interface name. // Note that we ignore the strict_policy and don't propagate it // further (since we do no outbound RPCs anyway). strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg,&len); if ((len != (sizeof(svcmgr_ID) / 2)) || memcmp(svcmgr_ID,s,sizeof(svcmgr_ID))) { fprintf(stderr,"invalID ID %s\n",str8(s)); return -1; } switch(txn->code) { case SVC_MGR_GET_SERVICE: case SVC_MGR_CHECK_SERVICE: s = bio_get_string16(msg,&len); ptr = do_find_service(bs,len); if (!ptr) break; bio_put_ref(reply,ptr); return 0; ...... } default: LOGE("unkNown code %d\n",txn->code); return -1; } bio_put_uint32(reply,0); return 0; }
这里, Service Manager要处理的code是SVC_MGR_CHECK_SERVICE,这是在前面的BpServiceManager::checkService函数里面设置的。
回忆一下,在BpServiceManager::checkService时,传给Binder驱动程序的参数为:
writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);
writeString16("androID.os.IServiceManager");
writeString16("media.player");
这里的语句:
strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg,&len); s = bio_get_string16(msg,&len);
其中,会验证一下传进来的第二个参数,即"androID.os.IServiceManager"是否正确,这个是验证RPC头,注释已经说得很清楚了。
最后,就是调用do_find_service函数查找是存在名称为"media.player"的服务了。回忆一下前面一篇文章AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,MediaPlayerService已经把一个名称为"media.player"的服务注册到Service Manager中,所以这里一定能找到。我们看看do_find_service这个函数:
voID *do_find_service(struct binder_state *bs,uint16_t *s,unsigned len) { struct svcinfo *si; si = find_svc(s,len); // LOGI("check_service('%s') ptr = %p\n",str8(s),si ? si->ptr : 0); if (si && si->ptr) { return si->ptr; } else { return 0; } }
这里又调用了find_svc函数:
struct svcinfo *find_svc(uint16_t *s16,unsigned len) { struct svcinfo *si; for (si = svcList; si; si = si->next) { if ((len == si->len) && !memcmp(s16,si->name,len * sizeof(uint16_t))) { return si; } } return 0; }
就是在svcList列表中查找对应名称的svcinfo了。
然后返回到do_find_service函数中。回忆一下前面一篇文章AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析,这里的si->ptr就是指MediaPlayerService这个Binder实体在Service Manager进程中的句柄值了。
回到svcmgr_handler函数中,调用bio_put_ref函数将这个Binder引用写回到reply参数。我们看看bio_put_ref的实现:
voID bio_put_ref(struct binder_io *bio,voID *ptr) { struct binder_object *obj; if (ptr) obj = bio_alloc_obj(bio); else obj = bio_alloc(bio,sizeof(*obj)); if (!obj) return; obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; obj->type = BINDER_TYPE_HANDLE; obj->pointer = ptr; obj->cookie = 0; }
这里很简单,就是把一个类型为BINDER_TYPE_HANDLE的binder_object写入到reply缓冲区中去。这里的binder_object就是相当于是flat_binder_obj了,具体可以参考AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析一文。
再回到svcmgr_handler函数中,最后,还写入一个0值到reply缓冲区中,表示 *** 作结果码:
bio_put_uint32(reply,0);
最后返回到binder_parse函数中,调用binder_send_reply函数将 *** 作结果反馈给Binder驱动程序:
voID binder_send_reply(struct binder_state *bs,struct binder_io *reply,voID *buffer_to_free,int status) { struct { uint32_t cmd_free; voID *buffer; uint32_t cmd_reply; struct binder_txn txn; } __attribute__((packed)) data; data.cmd_free = BC_FREE_BUFFER; data.buffer = buffer_to_free; data.cmd_reply = BC_REPLY; data.txn.target = 0; data.txn.cookie = 0; data.txn.code = 0; if (status) { data.txn.flags = TF_STATUS_CODE; data.txn.data_size = sizeof(int); data.txn.offs_size = 0; data.txn.data = &status; data.txn.offs = 0; } else { data.txn.flags = 0; data.txn.data_size = reply->data - reply->data0; data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0); data.txn.data = reply->data0; data.txn.offs = reply->offs0; } binder_write(bs,&data,sizeof(data)); }
注意,这里的status参数为0。从这里可以看出,binder_send_reply告诉Binder驱动程序执行BC_FREE_BUFFER和BC_REPLY命令,前者释放之前在binder_transaction分配的空间,地址为buffer_to_free,buffer_to_free这个地址是Binder驱动程序把自己在内核空间用的地址转换成用户空间地址再传给Service Manager的,所以Binder驱动程序拿到这个地址后,知道怎么样释放这个空间;后者告诉Binder驱动程序,它的SVC_MGR_CHECK_SERVICE *** 作已经完成了,要查询的服务的句柄值也是保存在data.txn.data, *** 作结果码是0,也是保存在data.txn.data中。
再来看binder_write函数:
int binder_write(struct binder_state *bs,unsigned len) { struct binder_write_read bwr; int res; bwr.write_size = len; bwr.write_consumed = 0; bwr.write_buffer = (unsigned) data; bwr.read_size = 0; bwr.read_consumed = 0; bwr.read_buffer = 0; res = ioctl(bs->fd,&bwr); if (res < 0) { fprintf(stderr,"binder_write: ioctl Failed (%s)\n",strerror(errno)); } return res; }
这里可以看出,只有写 *** 作,没有读 *** 作,即read_size为0。
这里又是一个ioctl的BINDER_WRITE_READ *** 作。直入到驱动程序的binder_ioctl函数后,执行BINDER_WRITE_READ命令,这里就不累述了。
最后,从binder_ioctl执行到binder_thread_write函数,首先是执行BC_FREE_BUFFER命令,这个命令的执行在前面一篇文章AndroID系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析已经介绍过了,这里就不再累述了。
我们重点关注BC_REPLY命令的执行:
int binder_thread_write(struct binder_proc *proc,cmd == BC_REPLY); break; } ...... *consumed = ptr - buffer; } return 0; }
又再次进入到binder_transaction函数:
static voID binder_transaction(struct binder_proc *proc,*off_end; struct binder_proc *target_proc; struct binder_thread *target_thread = NulL; struct binder_node *target_node = NulL; struct List_head *target_List; wait_queue_head_t *target_wait; struct binder_transaction *in_reply_to = NulL; struct binder_transaction_log_entry *e; uint32_t return_error; ...... if (reply) { in_reply_to = thread->transaction_stack; if (in_reply_to == NulL) { ...... return_error = BR_Failed_REPLY; goto err_empty_call_stack; } ...... thread->transaction_stack = in_reply_to->to_parent; target_thread = in_reply_to->from; ...... target_proc = target_thread->proc; } else { ...... } if (target_thread) { e->to_thread = target_thread->pID; target_List = &target_thread->todo; target_wait = &target_thread->wait; } else { ...... } /* Todo: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t),GFP_KERNEL); if (tcomplete == NulL) { return_error = BR_Failed_REPLY; goto err_alloc_tcomplete_Failed; } ...... if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NulL; t->sender_euID = proc->tsk->cred->euID; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc,tr->data_size)) { binder_user_error("binder: %d:%d got transaction with invalID " "data ptr\n",thread->pID); return_error = BR_Failed_REPLY; goto err_copy_data_Failed; } if (copy_from_user(offp,tr->data.ptr.offsets,tr->offsets_size)) { binder_user_error("binder: %d:%d got transaction with invalID " "offsets ptr\n",thread->pID); return_error = BR_Failed_REPLY; goto err_copy_data_Failed; } ...... off_end = (voID *)offp + tr->offsets_size; for (; offp < off_end; offp++) { struct flat_binder_object *fp; ...... fp = (struct flat_binder_object *)(t->buffer->data + *offp); switch (fp->type) { ...... case BINDER_TYPE_HANDLE: case BINDER_TYPE_WEAK_HANDLE: { struct binder_ref *ref = binder_get_ref(proc,fp->handle); if (ref == NulL) { ...... return_error = BR_Failed_REPLY; goto err_binder_get_ref_Failed; } if (ref->node->proc == target_proc) { ...... } else { struct binder_ref *new_ref; new_ref = binder_get_ref_for_node(target_proc,ref->node); if (new_ref == NulL) { return_error = BR_Failed_REPLY; goto err_binder_get_ref_for_node_Failed; } fp->handle = new_ref->desc; binder_inc_ref(new_ref,fp->type == BINDER_TYPE_HANDLE,NulL); ...... } } break; ...... } } if (reply) { BUG_ON(t->buffer->async_transaction != 0); binder_pop_transaction(target_thread,in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; List_add_tail(&t->work.entry,&thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... }
这次进入binder_transaction函数的情形和上面介绍的binder_transaction函数的情形基本一致,只是这里的proc、thread和target_proc、target_thread调换了角色,这里的proc和thread指的是Service Manager进程,而target_proc和target_thread指的是刚才请求SVC_MGR_CHECK_SERVICE的进程。
那么,这次是如何找到target_proc和target_thread呢。首先,我们注意到,这里的reply等于1,其次,上面我们提到,Binder驱动程序在唤醒Service Manager,告诉它有一个事务t要处理时,事务t虽然从Service Manager的todo队列中删除了,但是仍然保留在transaction_stack中。因此,这里可以从thread->transaction_stack找回这个等待回复的事务t,然后通过它找回target_proc和target_thread:
in_reply_to = thread->transaction_stack; target_thread = in_reply_to->from; target_List = &target_thread->todo; target_wait = &target_thread->wait;
再接着往下看,由于Service Manager返回来了一个Binder引用,所以这里要处理一下,就是中间的for循环了。这是一个BINDER_TYPE_HANDLE类型的Binder引用,这是前面设置的。先把t->buffer->data的内容转换为一个struct flat_binder_object对象fp,这里的fp->handle值就是这个Service在Service Manager进程里面的引用值了。接通过调用binder_get_ref函数得到Binder引用对象struct binder_ref类型的对象ref:
struct binder_ref *ref = binder_get_ref(proc,fp->handle);
这里一定能找到,因为前面MediaPlayerService执行IServiceManager::addService的时候把自己添加到Service Manager的时候,会在Service Manager进程中创建这个Binder引用,然后把这个Binder引用的句柄值返回给Service Manager用户空间。
这里面的ref->node->proc不等于target_proc,因为这个Binder实体是属于创建MediaPlayerService的进程的,而不是请求这个服务的远程接口的进程的,因此,这里调用binder_get_ref_for_node函数为这个Binder实体在target_proc创建一个引用:
struct binder_ref *new_ref; new_ref = binder_get_ref_for_node(target_proc,ref->node);
然后增加引用计数:
binder_inc_ref(new_ref,NulL);
这样,返回数据中的Binder对象就处理完成了。注意,这里会把fp->handle的值改为在target_proc中的引用值:
fp->handle = new_ref->desc;
这里就相当于是把t->buffer->data里面的Binder对象的句柄值改写了。因为这是在另外一个不同的进程里面的Binder引用,所以句柄值当然要用新的了。这个值最终是要拷贝回target_proc进程的用户空间去的。
再往下看:
if (reply) { BUG_ON(t->buffer->async_transaction != 0); binder_pop_transaction(target_thread,in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { ...... }
这里reply等于1,执行binder_pop_transaction函数把当前事务in_reply_to从target_thread->transaction_stack队列中删掉,这是上次调用binder_transaction函数的时候设置的,现在不需要了,所以把它删掉。
再往后的逻辑就跟前面执行binder_transaction函数时候一样了,这里不再介绍。最后的结果就是唤醒请求SVC_MGR_CHECK_SERVICE *** 作的线程:
if (target_wait)
wake_up_interruptible(target_wait);
这样,Service manger回复调用SVC_MGR_CHECK_SERVICE请求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数等待下一个ClIEnt请求的到来。事实上,Service manger回到binder_loop函数再次执行ioctl函数时候,又会再次进入到binder_thread_read函数。这时个会发现thread->todo不为空,这是因为刚才我们调用了:
List_add_tail(&tcomplete->entry,&thread->todo);
把一个工作项tcompelete放在了在thread->todo中,这个tcompelete的type为BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驱动程序会执行下面 *** 作:
switch (w->type) { case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); List_del(&w->entry); kfree(w); } break; ...... }
binder_loop函数执行完这个ioctl调用后,才会在下一次调用ioctl进入到Binder驱动程序进入休眠状态,等待下一次ClIEnt的请求。
上面讲到调用请求SVC_MGR_CHECK_SERVICE *** 作的线程被唤醒了,于是,重新执行binder_thread_read函数:
static int binder_thread_read(struct binder_proc *proc,(uint32_t __user *)ptr)) return -EFAulT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NulL && List_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... } else { if (non_block) { if (!binder_has_thread_work(thread)) ret = -EAGAIN; } else ret = wait_event_interruptible(thread->wait,binder_has_thread_work(thread)); } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NulL; if (!List_empty(&thread->todo)) w = List_first_entry(&thread->todo,entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } ...... switch (w->type) { case BINDER_WORK_TRANSACTION: { t = container_of(w,work); } break; ...... } if (!t) continue; BUG_ON(t->buffer == NulL); if (t->buffer->target_node) { ...... } else { tr.target.ptr = NulL; tr.cookie = NulL; cmd = BR_REPLY; } tr.code = t->code; tr.flags = t->flags; tr.sender_euID = t->sender_euID; if (t->from) { ...... } else { tr.sender_pID = 0; } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (voID *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + AliGN(t->buffer->data_size,sizeof(tr))) return -EFAulT; ptr += sizeof(tr); ...... List_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { ...... } else { t->buffer->transaction = NulL; kfree(t); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; } break; } done: ...... return 0; }
就是从下面这个调用:
ret = wait_event_interruptible(thread->wait,binder_has_thread_work(thread));
被唤醒过来了。在while循环中,从thread->todo得到w,w->type为BINDER_WORK_TRANSACTION,于是,得到t。从上面可以知道,Service Manager返回来了一个Binder引用和一个结果码0回来,写在t->buffer->data里面,现在把t->buffer->data加上proc->user_buffer_offset,得到用户空间地址,保存在tr.data.ptr.buffer里面,这样用户空间就可以访问这个数据了。由于cmd不等于BR_TRANSACTION,这时就可以把t删除掉了,因为以后都不需要用了。
执行完这个函数后,就返回到binder_ioctl函数,执行下面语句,把数据返回给用户空间:
if (copy_to_user(ubuf,sizeof(bwr))) { ret = -EFAulT; goto err; }
接着返回到用户空间IPCThreadState::talkWithDriver函数,最后返回到IPCThreadState::waitForResponse函数,最终执行到下面语句:
status_t IPCThreadState::waitForResponse(Parcel *reply,status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; ...... cmd = mIn.readInt32(); ...... switch (cmd) { ...... case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr,this); } else { ...... } } else { ...... } } goto finish; ...... } } finish: ...... return err; }
注意,这里的tr.flags等于0,这个是在上面的binder_send_reply函数里设置的。接着就把结果保存在reply了:
reply->ipcsetDataReference( reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),this);
我们简单看一下Parcel::ipcsetDataReference函数的实现:
voID Parcel::ipcsetDataReference(const uint8_t* data,size_t dataSize,const size_t* objects,size_t objectsCount,release_func relFunc,voID* relcookie) { freeDatanoInit(); mError = NO_ERROR; mData = const_cast<uint8_t*>(data); mDataSize = mDataCapacity = dataSize; //LOGI("setDataReference Setting data size of %p to %lu (pID=%d)\n",this,mDataSize,getpID()); mDataPos = 0; LOGV("setDataReference Setting data pos of %p to %d\n",mDataPos); mObjects = const_cast<size_t*>(objects); mObjectsSize = mObjectsCapacity = objectsCount; mNextObjectHint = 0; mOwner = relFunc; mOwnercookie = relcookie; scanForFds(); }
上面提到,返回来的数据中有一个Binder引用,因此,这里的mobjectsize等于1,这个Binder引用对应的位置记录在mObjects成员变量中。
从这里层层返回,最后回到BpServiceManager::checkService函数中:
virtual sp<IBinder> BpServiceManager::checkService( const String16& name) const { Parcel data,reply; data.writeInterfacetoken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); remote()->transact(CHECK_SERVICE_TRANSACTION,&reply); return reply.readStrongBinder(); }
这里就是从:
remote()->transact(CHECK_SERVICE_TRANSACTION,&reply);
返回来了。我们接着看一下reply.readStrongBinder函数的实现:
sp<IBinder> Parcel::readStrongBinder() const { sp<IBinder> val; unflatten_binder(Processstate::self(),*this,&val); return val; }
这里调用了unflatten_binder函数来构造一个Binder对象:
status_t unflatten_binder(const sp<Processstate>& proc,const Parcel& in,sp<IBinder>* out) { const flat_binder_object* flat = in.readobject(false); if (flat) { switch (flat->type) { case BINDER_TYPE_BINDER: *out = static_cast<IBinder*>(flat->cookie); return finish_unflatten_binder(NulL,*flat,in); case BINDER_TYPE_HANDLE: *out = proc->getStrongProxyForHandle(flat->handle); return finish_unflatten_binder( static_cast<BpBinder*>(out->get()),in); } } return BAD_TYPE; }
这里的flat->type是BINDER_TYPE_HANDLE,因此调用Processstate::getStrongProxyForHandle函数:
sp<IBinder> Processstate::getStrongProxyForHandle(int32_t handle) { sp<IBinder> result; autoMutex _l(mlock); handle_entry* e = lookupHandleLocked(handle); if (e != NulL) { // We need to create a new BpBinder if there isn't currently one,OR we // are unable to acquire a weak reference on this current one. See comment // in getWeakProxyForHandle() for more info about this. IBinder* b = e->binder; if (b == NulL || !e->refs->attemptIncWeak(this)) { b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b; } else { // This little bit of nastyness is to allow us to add a primary // reference to the remote proxy when this team doesn't have one // but another team is sending the handle to us. result.force_set(b); e->refs->decWeak(this); } } return result; }
这里我们可以看到,Processstate会把使用过的Binder远程接口(BpBinder)缓存起来,这样下次从Service Manager那里请求得到相同的句柄(Handle)时就可以直接返回这个Binder远程接口了,不用再创建一个出来。这里是第一次使用,因此,e->binder为空,于是创建了一个BpBinder对象:
b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b;
最后,函数返回到IMediaDeathNotifIEr::getMediaPlayerService这里,从这个语句返回:
binder = sm->getService(String16("media.player"));
这里,就相当于是:
binder = new BpBinder(handle);
最后,函数调用:
sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);
到了这里,我们可以参考一下前面一篇文章浅谈AndroID系统进程间通信(IPC)机制Binder中的Server和ClIEnt获得Service Manager,就会知道,这里的interface_cast实际上最终调用了IMediaPlayerService::asInterface函数:
androID::sp<IMediaPlayerService> IMediaPlayerService::asInterface(const androID::sp<androID::IBinder>& obj) { androID::sp<IServiceManager> intr; if (obj != NulL) { intr = static_cast<IMediaPlayerService*>( obj->queryLocalinterface(IMediaPlayerService::descriptor).get()); if (intr == NulL) { intr = new BpMediaPlayerService(obj); } } return intr; }
这里的obj就是BpBinder,而BpBinder::queryLocalinterface返回NulL,因此就创建了一个BpMediaPlayerService对象:
intr = new BpMediaPlayerService(new BpBinder(handle));
因此,我们最终就得到了一个BpMediaPlayerService对象,达到我们最初的目标。
有了这个BpMediaPlayerService这个远程接口之后,MediaPlayer就可以调用MediaPlayerService的服务了。
至此,AndroID系统进程间通信(IPC)机制Binder中的ClIEnt如何通过Service Manager的getService函数获得Server远程接口的过程就分析完了,Binder机制的学习就暂告一段落了。
不过,细心的读者可能会发现,我们这里介绍的Binder机制都是基于C/C++语言实现的,但是我们在编写应用程序都是基于Java语言的,那么,我们如何使用Java语言来使用系统的Binder机制来进行进程间通信呢?这就是下一篇文章要介绍的内容了,敬请关注。
以上就是对AndroID IPC Binder ClIEnt获得Server 远程接口过程的源码分析,后续继续补充相关文章,谢谢大家对本站的支持!
总结以上是内存溢出为你收集整理的Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析全部内容,希望文章能够帮你解决Android系统进程间通信(IPC)机制Binder中的Client获得Server远程接口过程源代码分析所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)