insar测量原理

insar测量原理,第1张

1

INSAR三维测量的原理

2

全息技术的基本原理及其应用 干涉合成孔径雷达(简称InSAR) 被广泛地应用于地质灾害预测、地形地貌测绘、军事导向和生活信息获取等领域。

一、内容概述

地表形变监测是地质灾害防治与预警的基础工作。我国当前频发的滑坡、地面沉降、地裂缝、地面塌陷等对人居环境的威胁逐步增大。传统地面测量手段受制于监测范围小、点位密度低和施测周期长等不足,对地质灾害宏观特征及时空演化过程的监测能力有限。自20世纪90年代末期开始,合成孔径雷达干涉测量(InSAR)技术在多类型地表形变监测中得到广泛的研究和应用,具有快速、准确、精度高、覆盖范围广等优点,改变了以往测量手段点位密度低、工作周期长、施测要求高的不足。

InSAR技术的核心是利用相位观测值获取目标的几何特征及变化信息。由于干涉相位对微小形变极其敏感,毫米级的形变在干涉相位中都会有所反映,因而利用重复轨观测获取的干涉相位,通过差分干涉处理可获得高精度的形变信息。

自2000年起,在国土资源部、科技部等部门的支持下,航遥中心依托国土资源大调查、国土资源部公益性行业基金、863计划等项目,开展InSAR技术的理论、方法及应用研究,形成了趋于完善的多尺度、多类型的灾害性地表形变InSAR调查与监测技术体系。通过InSAR关键技术研究、应用示范、结果验证和工程化应用等环节的攻关研究,系统解决了低相干、有限数据量条件下InSAR地面沉降信息提取和跨轨道、多图幅大范围地面沉降InSAR监测制图等一系列地表形变InSAR监测工程化应用的核心技术,建立了一套解决大区域性地面沉降同步监测的InSAR方法技术体系。在我国首次系统利用InSAR技术开展了大范围区域性地面沉降工程化监测,获得了当前华北平原、长三角、汾渭谷地等地区全覆盖、高精度的地面沉降监测数据,填补了地面沉降基础调查数据的空白。工程化应用表明相干目标InSAR时序技术测量成果的精度优于±3~5 mm,在区域性监测中整体方差优于±1 cm,满足地面沉降监测的需要。InSAR技术的研究和应用提升了我国地表形变,特别是区域性地面沉降监测的工作能力和技术水平,取得了显著的社会效益和经济效益。

二、应用范围及应用实例

研究成果先后应用于地面沉降、滑坡、高铁沉降、油田地表变形和矿山开采沉陷等多类型地表形变监测。从2004年至今,先后开展了华北平原、长江三角洲地区、汾渭谷地全覆盖InSAR工程化监测,突破了以往独立行政区划对地面沉降监测工作的局限,实现了区域地面沉降InSAR监测成果“一张图”,填补了我国地面沉降防治与风险管理工作基础数据的空白。

同时,针对重大工程对地面稳定性的要求,开展了京津、京沪等高速铁路,南水北调工程东线,西气东输工程长三角段等一批重大工程区地面沉降InSAR调查和监测,为重大工程区的地质灾害风险管理提供了有效的技术服务。先后开展了三峡库区滑坡(新滩、树坪等)、矿山开采沉陷(唐山、兖州等)、油田地表形变(大港、东营等)、城市地裂缝(西安)、地震形变场等多尺度、多类型地表形变监测应用,全面提升了InSAR技术的应用能力和水平。

图1 华北平原地面沉降区InSAR监测沉降速率图(2008~2010年)

1实现我国三大地面沉降区监测全覆盖

利用InSAR技术开展华北平原、长三角、汾渭谷地大范围、区域性地面沉降调查与监测,累计范围超过20×104 km2,首次实现了我国三大沉降区的InSAR监测全覆盖。

(1)华北平原地面沉降InSAR监测成果

监测范围14×104 km2,覆盖北京、天津、石家庄、唐山、郑州等城市以及黄河三角洲地区(图1)。监测成果显示:华北平原以往地面沉降严重的主要城市(天津、北京(图2,图3)、沧州等),自2004年开始市区沉降速率均有所减缓,普遍小于30mm;主要沉降中心多集中于这些城市的周边,以各种开发区为主。沉降中心的年沉降速率普遍大于40~50mm,且有不断扩大的趋势;各省级行政区交界地带沉降区呈现连片发展趋势,沉降速率大、范围广;沉降中心与大型基础设施(铁路、公路)分布以及区域经济发展密切相关。

图2 北京地区2007~2010年累积沉降量

图3 北京来广营累积沉降量

(2)长江三角洲地区地面沉降InSAR监测成果

监测面积约6×104km2,覆盖上海(图4、图5)、江苏苏锡常与扬泰通、浙江杭嘉湖地区,查明了各地区2006年至今地面沉降的分布状况,获取了上海、苏锡常、杭嘉湖地区的连续监测数据,发现了上海市与浙江交界地带金山 平湖等多个快速大范围沉降区,年最大沉降速率达到40~50mm。监测表明:长三角地区整体沉降幅度和范围小于华北平原地区,地面沉降速率总体趋缓,快速沉降区仍多集中在各地的主要开发区。

图4 上海地区InSAR 监测累积地面沉降量图(2003年9 月—2010年9 月)

图5 华漕镇累积沉降量图(2003年9月—2010年9月)

(3)汾渭地区地面沉降InSAR监测成果

图6 太原盆地地面沉降速率图(2007~2010年)

以大同-太原-临汾地区(图6)、西安市为主要工作区,查明了覆盖汾渭地区近4×104 km2 范围的地面沉降发展分布状况,新发现了榆次、清徐、临汾等快速沉降区,最大年沉降速率达50~70mm。完成了太原市区(图7)自2005年以来地面沉降变化过程的连续监测,详细查明了各主要沉降中心的时空变化特征。

图7 太原市主城区主要沉降中心分布图

2有效服务高速铁路沿线等国家重大基础设施建设

积极服务国家重大基础设施建设,应用InSAR技术开展高速铁路沿线地面沉降监测与调查。在国内首次应用欧空局ENVISAT卫星SAR数据(分辨率20m)开展了京津高速铁路全线地面沉降状况InSAR调查与监测,获取了沿线5 km范围内2004年至今各年度的地面沉降监测成果,发现了京津高铁沿线位于北京和天津地区的2 处主要沉降漏斗(图8,图9)。同时,首次利用德国TerraSAR-X高分辨率SAR数据(分辨率3m)开展了京津高铁沿线重点沉降区精细监测,获取了2009年2~10月间连续监测数据,有效服务于铁道部门对京津高铁基础的稳定性评价和对策研究工作。

3积极开展多类型地质灾害监测与工程实践

在实现区域性地面沉降InSAR监测的基础上,开展了矿山开采沉陷调查、油田地表变形监测、滑坡活动监测、城市地裂缝探测、地震形变场提取等多尺度、多形式的灾害性地表形变场探测与监测,取得了良好效果。以唐山开滦矿区为研究区(图10 和图11),开展了煤矿区开采沉陷和矿业城市地面稳定性InSAR监测,证实InSAR技术可及时发现矿山开采的范围和强度,能够满足矿山开采沉陷动态监测需要。目前已广泛应用于大同、兖州、淮南、徐州、皖北等主要煤矿区。连续监测三峡地区新滩滑坡、链子崖滑坡自2002年至今的活动变化,结果显示新滩滑坡已趋于稳定。开展石油开采诱发地表变形的InSAR监测,查明了大庆、东营等油田地面沉降和抬升状况。

图8 京津高铁全线地面沉降速率图(2007~2009年)

图9 京津高铁沿线2007~2009年地面沉降剖面图

图10 开滦矿区开采沉陷InSAR干涉图(2009年10月07日至2009年10月31日)

InSAR技术在我国主要地面沉降区以及多类型地表形变灾害监测工作中的应用实践显示了在地质灾害监测领域的独特优势。“十二五”期间,InSAR技术将在全国地质灾害易发区调查、重要经济区(城市群)建设、主要矿产资源开发区监测、地下水主要开发利用区监测以及重大工程区等领域内缓慢地表形变监测工作中发挥重要作用。立足全国区域性地面沉降监测工作,重点围绕国家重大基础设施建设,依托InSAR技术开展大区域地表形变监测,提供地面稳定性监测与风险评价,服务于工程规划、建设和运营。在矿山、石油、水利等领域的应用,特别是煤矿区开采沉陷和工矿城市地面沉降监测方面的应用需求明显,将促进InSAR技术成为日常监测手段。

图11 唐山市老采空区缓慢沉降速率图(2004~2009)

高分辨雷达卫星及其相关技术的发展将进一步推动地质灾害InSAR精细化监测。新一代高分辨雷达卫星,如TerraSAR-X、Cosmo-skymed等将为InSAR技术精细化应用提供丰富的数据源。应用高分辨SAR数据开展高速铁路、公路、大坝以及大型单体建筑等重大工程和基础设施的精细监测将成为现实。将在国土资源、矿山、交通运输、水利工程等诸多领域的地质灾害调查与监测工作中发挥更为重要的作用。

三、推广转化方式

本项研究成果已先后在中国地质调查局开展的《华北平原地面沉降监测与防治》、《长三角地区地面沉降监测与风险管理》、《全国地面沉降监测与防治》等计划项目中得以推广应用,并于2011年启动了《全国地表形变遥感地质调查》工作,旨在应用InSAR技术开展我国中东部的平原、盆地、三角洲地区和海岸带地区地面沉降、矿山开采沉陷调查与监测,详细查明目前我国地面沉降的发生状况,为全国地下水管理、城市规划、基础设施建设布局等提供基础资料。

华北平原和长三角地面沉降InSAR监测成果有效地指导了各地区地面监测网络的布设和建设。通过与北京、天津、上海等各省市地质环境总站联合,针对各地区关心的重点沉降区开展详细调查和监测,直接服务于地方需要。此外,为铁道部第三设计院、煤炭科学研究院唐山分院、山东省鲁北工程勘查院、河北省水文地质工程地质4队等单位和组织提供了技术资料和成果。

2010年6月,中国地质调查局以地质调查要情专报的形式刊发了“InSAR技术在我国地面沉降调查监测工作中应用效果显著”的通报,介绍InSAR技术研发取得的成果和先进经验。2011年初,由中国地质调查局主办,航遥中心承办,召开了迄今以来全国最大规模的“地表形变InSAR监测技术培训及研讨会”,全国各地质环境监测部门、高校、研究所等机构共计120余人参加了本次培训,邀请了来自意大利、德国、加拿大等国家和机构专门从事InSAR技术研发的专家授课,全面介绍InSAR技术及其应用情况,取得了良好的社会效益。

主要推广转换方式包括会议交流、技术培训与技术咨询。

技术依托单位:中国国土资源航空物探遥感中心

联系人:葛晓立

通讯地址:北京市海淀区学院路31号航遥中心遥感方法技术研究所

邮政编码:100083

联系电话:010-62060051

电子邮件:gxiaoli@sohucom

(一)主要卫星数据简介

1美国陆地卫星数据

用Landsat系列卫星的热红外第6波段进行地下煤火区地表热异常信息的提取、确定火区的位置是比较准确的,费用相对于使用夜航航空热红外扫描图像来说大为降低。它是地下煤火探测的常用数据源。

Landsat的重访周期为16天,这使得其白天和夜间成像的TM6(ETM+6)数据对于地下煤火动态探测、检查灭火效果和指导灭火行动的开展而言是理想的数据源。然而,因为TM6 的空间分辨率是120m,面积较小的或深层的煤火不能探测出来。60m热空间分辨率的Landsat-7、ETM+6的探测煤火应用使得状况有改善,但该数据现在已经无法获取。

2地球观测系统EOS卫星数据

(1)ASTER。ASTER热红外谱区的波段数达到了5个,分辨率仅为90m,但其量化值为12bit;因此,热图像像元值的动态范围更大,温度信息更丰富,更有利于热信息分析提取。故用其进行地表温度反演比较合适。在地下煤火的探测中,越来越倾向于使用ASTER数据进行大规模火区的初步定位和地表温度反演。

(2)MODIS。尽管MODIS数据的温度反演精度比较高,基本上可以实现免费提供;但是在地下煤火的研究中,一般而言煤火区的面积有限,而其空间分辨率又相对太低,故而应用效果和前景不是很好。

3高空间分辨率卫星数据

(1)QuickBird。QuickBird影像产品分基本影像、标准影像、正射影像、立体像对等不同类型,从波段组成上分全色波段影像数据、多光谱影像数据、全色波段影像数据与多光谱影像数据产品包、融合影像数据(真彩色或假彩色)等多种类型。

(2)IKONOS。IKONOS卫星数据具有高精度、高分辨率的特点,可广泛用于城市、港口、土地、森林、环境、灾害调查和军事目标动态探测。尤其在土地利用调查中更能发挥优势、提高调查的实效性,节省人力、物力,基本实现土地利用管理的高技术化。

(3)SPOT系列。SPOT4图像最突出的优点是它具有比TM图像更高的空间分辨率,并且可以组成立体像对,生成数字高程模型。TM和SPOT4图像可以组合成分辨率为1:50000的图像。SPOT5图像的空间分辨率又有显著提高,使得遥感技术向精确化迈进了一大步,可以在地下煤火动态探测中发挥更重要的作用。

利用SPOT、IKONOS和QuirkBird卫星图像,可直接获得与地下煤层自燃有关的燃烧系统大小、位置、性质及环境相互关系等精细特征信息。

(4)其他高空间分辨率卫星。除这三种常见的高空间分辨率卫星影像数据外,还有以色列的EROS⁃1A和印度的IRS⁃1D等。这些高空间分辨率的卫星数据,一般都覆盖可见光波段,对地表物体的探测比较精细,适合于大比例尺成图。利用其提供的立体测图能力,还可以制作DEM,在地下煤火区地表裂隙的探测和煤火工程的设计施工中可发挥其重要作用。

4雷达遥感数据

(1)欧空局的ERS⁃1、2。欧洲地球资源卫星ERS⁃1、2为欧空局所属卫星,主要用于科学研究与应用。ERS⁃1、2工作于C波段,采用VV极化。这些参数使ERS⁃1、2 适于中等或大范围地形测绘和林草探测。

(2)加拿大RADARSAT。RADARSAT是加拿大的遥感卫星系统,于1996年发射使用。该系统提供可靠的、成本低的环境和资源数据。RADARSAT 是第一颗真正满足商业化运营的雷达遥感卫星。RADARSAT独特的机动能力使它的探测范围几乎达整个南极地区。RADARSAT有多种工作方式,包括宽幅测绘、良好的分辨力和标准的波束宽度,还可选择入射角。

(3)欧空局的ENVISAT⁃1。ENVISAT⁃1属极轨对地观测卫星系列之一,该卫星是欧洲迄今建造的最大的环境卫星。作为ERS⁃1/2合成孔径雷达卫星的延续,ENVISAT⁃1数据主要用于监视环境,即对地球表面和大气层进行连续的观测,供制图、资源勘查、气象预报及灾害判断运用。

干涉雷达(INSAR)技术是雷达遥感的热点研究领域。当前,INSAR的主要应用除进行地形制图,生成大范围高精度的数字高程模型(DEM)及坡度测量外,基于干涉雷达基础上发展起来的雷达差分干涉测量技术在地表下陷、山体滑坡探测和地震形变探测等方面具有重要的作用。

5中巴资源卫星数据

中巴卫星遥感数据用途广泛,可用于土地利用、水资源调查、农作物估产、探矿、地质测绘、城市规划、环境保护、海岸带探测等地球资源与环境调查的各个方面。IRMSS热红外B9波段的空间分辨率比较低,数据的质量不是很稳定。对于地下煤火的遥感探测而言,其利用效果还有待进一步验证和提高。

6微小卫星BIRD数据

双波段热红外探测仪(BIRD,Bi⁃Spectral InfraRed Detection)是德国宇航中心所属的新型科学实验小卫星,于2001年10月发射升空,其目的是识别和定量描述地球表面的高温事件。BIRD卫星数据的应用领域主要是森林草原火灾、火山爆发、煤火等较大面积火情的探测。已有研究资料表明,其夜间热红外影像可探测地下煤火,不容易准确定位。

(二)卫星遥感数据组合与探测目标优化

卫星遥感方法具有周期短、覆盖面积广和效益高的特点。由于其空间分辨率的限制,目前作为一种区域性煤层自燃的探测方法。

卫星遥感探测方法应用的关键是必须以合适的地下煤火调查和应用目标为前提,以地下煤火热辐射特征及光谱特征为依据,选择经济、技术指标均较为合理的遥感数据源或数据源组合。

中分辨率卫星遥感。以ASTER、ETM、中巴资源卫星为代表,热红外波段空间分辨率60~156m,灵敏度1℃,夜间的热红外信息经过大气校正、辐射校正、几何校正、阈值分析、图像变换和彩色增强等处理后,可提取地下煤火产生的地面热辐射异常信息,确定与煤火区有关的热异常区域。主要用于中比例尺的煤火区普查,初步圈定具有一定规模的煤田燃烧活火区的范围和煤火探测靶区。通过不同时相的热异常区域对比,用于探测煤火区及周边区域的热场动态变化。可见光波段空间分辨率15~30m,利用地下煤火作用下地面岩石和植被等光谱特征的变化,采用图像信息处理方法提取与煤火有关的环境变化信息,确定煤田构造、煤系地层及燃烧环境;用于探测煤火区及周边区域的环境、灾害动态变化。星载热红外遥感用于火灾探测的优越性表现在其可重复性、数据获取费用比较便宜、加上多波段 *** 作比较容易等,缺点是空间分辨率相对比较低。

高分辨率卫星遥感。以SPOT、IRS、QuickBird、IKONOS为代表,空间分辨率可以达到061~58m。利用高分辨率卫星遥感结构信息,分析地下煤火作用下地面物质色调和结构特征的变化,提取地下煤火燃烧中心、燃烧裂隙、燃烧系统、采空燃烧区、烧变岩、燃烧塌陷和煤田内非煤火区的燃烧信息等。

ASTER、TM与QuickBird数据结合使用,是研究地下煤火比较合适的技术组合。QuickBird等高分辨率卫星数据价格相对比较昂贵,且单幅覆盖范围有限,仅仅适合单个煤火区的高精度燃烧裂隙系统等煤火信息探测。

卫星数据时相的选择也是煤火探测的一个重要因素。由于中国北方煤田分布区冬季植被普遍稀少,TM图像能较准确地反映地质体的波谱特征;夏季植被相对发育,对地质体的谱特征干扰较大。因此,冬季数据具有一定的优势。

a成像时太阳高度角小,对地貌起伏和地质构造反映显著,便于分析煤层自燃和地质构造的潜在关系。

b冬季地表常有积雪,对解译和识别火区有特殊的帮助。这是由于煤自燃释放的热量融化了积雪,使深色煤系出露,与白色雪景形成强烈反差,使得活火区一览无余。

利用合成孔径雷达的干涉测量可以获得地下煤火区地面沉降量,探测地表塌陷的变化,卫星高光谱遥感可以探测煤火区的岩石矿物、土壤和植被的物理化学成分的变化。目前在煤火探测中的这方面应用研究还很少,它的应用对煤火探测有很大的作用。

以上就是关于insar测量原理全部的内容,包括:insar测量原理、地表形变InSAR调查与监测技术、卫星遥感探测等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9281311.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存