前言:此版本的软件安装包附加激活教程我可以给您一份,不过仅供个人使用,切勿传播,希望可以帮助您。
Hash校验工具电脑版
使用说明
1将需要计算md5值的程序或者文件拖入软件中,即可自动计算,并得到所有数据
2将计算得到值与官方提供的值比较,即可确认文件是否经过二次处理,被加工
[TOC]
通过解决方案:
Java中如将数据存储在内存中,最简单的算法结构是HashMap。通过HashMap判断key是否存在,来判断数据是否存在。通过hash算法查找元素,时间复杂度基本是 O(1) (可能存在hash冲突后转换成链表或红黑树的情况,时间复杂度的影响可以忽略)。
使用HashMap速度很快,存储简单,绝大部分场景可以使用。但是HashMap 占用的空间比较大 :
为什么出现布隆过滤器:
举例:
如1000万个Integer存储在内存中,占用空间为:4x32x10000000位,即1220兆。如布隆过滤器通过4字节存储(布隆过滤器通过多次hash对数据计算后-->几次hash根据数据量指定,得到多个数据, 占用多个位 ),则占用空间为610M。比原有空间少一半。
个人觉得,此比较在字符等的比较中尤为有效。
一个字符串多个字符,根据编码方式,一个字符两个或三个字节,如10个字符,字符串存储占用20个字节,还有相关字符串相关的类信息的内存占用。
位存储,根据数据量的大小,hash的位数,灵活计算。如4个字节,则是原hashMap占用空间的五分之一。
(1)定义字节向量
先定义一个指定长度的字节数组(字节数组,数组内每个元素的值)。
如长度为8(一个字节大小),默认所有元素值均为0,如下:
(2)计算哈希值
将要写入过滤器的数据,根据一定数量的哈希函数,得到多个哈希值,再依次判断每个哈希值对应的索引。
如使用3个哈希函数,计算得到3个哈希值,判定哈希值对应的字节向量为为1,3,7。
(3)更新字节向量
将计算出的字节向量的索引, 对应的字节向量中的元素值更高为1 (无论之前为0或者为1,均更改为1)。如下:
(1)计算哈希值
将要判断过滤器中是否存在的数据,根据一定数量的哈希函数,得到多个哈希值,再依次判断每个哈希值对应的索引。
如使用3个哈希函数,计算得到3个哈希值,判定哈希值对应的字节向量为为1,3,7。
注意:哈希函数的判断方式和计算索引的方式,需和写入数据时完全一致。
(2)判断是否存在
如原字节数组中,对应1,3,7中存在的元素的值都为1。则判定为此元素 可能存在 ,但凡有一个元素的值不为1,则判定此元素 一定不存在 。
布隆过滤器,主要需实现的目标是, 在指定的数据个数范围内,满足误判率在设定的范围内 ,误判率太高的话,无法起到过滤数据的情况,误判率不能为0。
因此需要计算两个数据来满足 存储数据的个数 和 误判率 :
使用布隆过滤器的决定性因素之一,就是此算法插入数据和查询数据的速度必须非常快。因此在对数据进行哈希运算的时候, 需选择计算快的哈希算法 。
而且, 写入数据以及查询数据的哈希算法,顺序和算法都需完全一致 。
待完善。。。。。
可以通过google的 guava ,在内存中轻松实现布隆过滤器。
无需手动计算满足字节数组的长度和哈希个数,只需要输入 拟输入数据的个数 和 期望误判率 即可。
不输入期望误判率的情况下,误判率为003,即100个非范围内的数据进行校验时,约三个数据会判定为存在。
多次执行,结果一致,根据结果判定:
内存的存储存在局限性,可以使用redis中的bitMap来实现字节数组的存储。
使用redis实现布隆过滤器。需要根据公式,手动计算字节数组的长度和哈希的个数。
实现过程,待完善。。。。。。
通俗来讲,哈希值就是文件的身份z,不过比身份z还严格。他是根据文件大小,时间,类型,创作者,机器等计算出来的,很容易就会发生变化,谁也不能预料下一个号码是多少,也没有更改他的软件。哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的。
有这样一种情境,有三万张我们要均匀放置于三个缓存服务器上
简单的做法是对缓存的key进行哈希计算,得到的值进行取模计算,所得到的余数,便是缓存的服务器编号
hash % 机器数 = 余数
当机器数为3时无论值为多少,其余数永远只有0,1,2三种情况
那么根据余数,我们给服务器进行编号s0,s1,s2,余数为0的放置于s0服务器上,1,2同理。
这样我们就将三万张的缓存均分成三份存放与三台缓存服务器中
因为对同一张进行哈希计算时,所得到的哈希值是不变的,所以当需要访问时,只要再次进行哈希计算和取模计算,就能获取到存放于哪台服务器,便可以去该服务器中查找满足了我们的需求。而这种算法也称之为哈希算法
这其中有一个问题,那便是如果我增加一台服务器呢
可以预见的是,当增加一台服务器服务器数变成了4而余数也出现了4种情况
这时向s2的服务器查询时,无法读取到,这导致了程序无法从缓存服务器中读取数据,这时程序就会向后端服务器请求,而大量的缓存同时失效,会导致所有请求都指向后端服务器,这会引起后端服务器的崩溃。
这是就要引入一致性哈希算法
还是同样的三个缓存服务器,这次我们将哈希值对2 32取模,所得到的数一定是1到2 32之间的一个整数
然后我们想像一个圆环,其上的每一个点都代表1到2^32之间的一个整数,而这个圆环也被称为hash环
之后我们对服务器A进行取模计算,这样算出来的整数肯定在1到2^32之间,将这个整数代表为服务器A,并且我们可以将这个整数映射到哈希环上,同样的道理我们处理另外两个服务器,这时三个服务器都被映射到了哈希环上,对于我们也将他映射到哈希环上
那么我们只要从的哈希值开始,沿顺时针在哈希环上查找,遇到的第一个服务器便是缓存所在的服务器
这时哪怕新添加一个服务器在哈希环上,我门所丢失的缓存数据也只是新添加的服务器到逆时针方向遇到的第一个服务器这部分数据,而这样仍然有大部分缓存在缓存服务器中可以被查找到,这样可以帮助后端服务器分担大部分压力,不会使服务器崩溃,而这部分丢失的缓存数据,之后重新在后端加载便可以了
这又引入了另一个问题,哈希偏斜
我们无法确保三个服务器在哈希环上为均分的状态,很有可能其中一台服务器分到了很大部分而另两台分到了很少的部分,这样同样会有后端服务器崩溃的隐患
我们可以添加很多虚拟结点同一个服务器我们分出许多虚拟节点,映射在哈希环上,哈希环上的节点越多,缓存被均分的概率便越大,这样可以尽可能的保证缓存在服务器上是接近理想均分的状态,避免了哈希偏斜的问题
以上就是关于急求 Hash校验工具电脑版,求网上大神分享一下,要可靠的,谢谢。全部的内容,包括:急求 Hash校验工具电脑版,求网上大神分享一下,要可靠的,谢谢。、布隆过滤器、关于哈希值等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)