怎样的架构设计才是真正的数据仓库架构

怎样的架构设计才是真正的数据仓库架构,第1张

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。

先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。

上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;

其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;

建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。

整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

我们从下往上看:

数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。

数据源的种类比较多:

网站日志:

作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,

一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:

业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。

当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。

来自于Ftp/>

有可能一些合作伙伴提供的数据,需要通过Ftp/也可以满足该需求;

其他数据源:

比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;

数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;

当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》

实时计算部分,后面单独说。

数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;

前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

数据应用

业务产品

业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

报表

同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

即席查询

即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;

这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。

即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。

当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP

目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;

这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;

比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口

这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

 我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。

做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;

这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。

前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。

总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

其实spark的核心就是RDD,只要你知道所有在RDD上的 *** 作才会被运行在cluster上就好了。其他的和正常的编程没啥区别。至于API,真要学也就是扫一下目录看看都有啥class就行了,用的时候在深入。尽管Spark本身是用Scala写的,但你可以用一些API使得你的工作容易些。如果你用过Python或者Scala的shells,那么你就已经在用这些语言的API了。你需要做的就是将你的程序保存为脚本而仅需很少的修改。

如果你在寻找构建更加健壮的程序,你可以使用Java API。即使你已经用Java完全实现了你的程序,你仍然可以在shell中勾画出的你的想法以确保在将其部署到你的集群之前你的算法是正确的。Spark发行了一些库:Spark SQL,Spark Streaming(建立在Spark上的实时计算框架),the MLlib machine learning library(机器学习库)和GraphX。

你可以通过使用一些易用的API来构建复杂的应用并且实时部署它们。你甚至可以以混合和匹配技术来构建应用程序或者大数据管道,例如从机器学习的结果生成图的应用。由 Hadoop平台支持的 Apache Spark 提供了强大和灵活性。通过完全支持Spark栈的MapR分布,对程序员很容易地实时创建一个复杂的大数据应用是可能的,就像批处理数据等等。

批:处理离线数据,冷数据。单个处理数据量大,处理速度比流慢。

流:处理在线,实时产生的数据。单次处理的数据量小,但处理速度更快。

Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用并行框架。

Spark,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的MapReduce的算法。

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说, Spark 启用了RDD(d性分布式数据集),除了能够提供交互式查询外,它还可以优化迭代工作负载。RDD可以常驻内存的属性,大大简化了迭代计算所需的开销,Spark任务可以立马利用上一次计算出来的RDD来进行下次迭代。

Apache Hadoop中的MapReduce是属于离线计算技术;

Spark中Spark Core属于离线计算技术,只不过它基于内存存储中间结果,速度上比MapReduce 快很多倍,又离实时计算技术很近;

Spark中Spark Streaming 子项目属于实时计算技术,类似于Storm;

Spark中SparkSQL属于离线计算技术,只不过它基于内存存储中间结果,速度上比Hive快很多倍。

Spark并不是要成为一个大数据领域的“独裁者”,一个人霸占大数据领域所有的“地盘”,而是与Hadoop进行了高度的集成,两者可以完美的配合使用。Hadoop的HDFS、Hive、HBase负责存储,YARN负责资源调度;Spark负责大数据计算。实际上,Hadoop+Spark的组合,可以解决绝大部分大数据的场景。

Spark逐渐形成了一套完整的生态系统,既能够提供内存计算框架,也可以支持SQL 即席查询、实时流计算、机器学习和图计算等。

Spark所提供的生态,可以支持如下3中场景:

一栈式解决方案(one stack to rule them all)

Spark包含了大数据领域常见的各种计算框架:

Spark streaming批量读取数据源中的数据,然后把每个batch转化成内部的RDD。Spark streaming以batch为单位进行计算(默认1s产生一个batch),而不是以Tuple为单位,大大减少了ack所需的开销,显著提高了吞吐。

但也因为处理数据的粒度变大,导致Spark streaming的数据延时不如Storm,Spark streaming是秒级返回结果(与设置的batch间隔有关),Storm则是毫秒级。

Storm提供了低延迟的计算,但是吞吐较低,并且无法保证exactly once(Storm trident采用batch的方式改善了这两点),Spark streaming通过小批量的方式保证了吞吐的情况下,同时提供了exactly once语义,但是实时性不如Storm,而且由于采用micro-batch的方式,对window和event time的支持比较有限(Spark streaming 20中引入了window和event time,还在起步阶段)。

Flink采用分布式快照的方式实现了一个高吞吐、低延迟、支持exactly once的流式系统,流式处理的方式也能更优雅的支持window和event time。

当然也不是说Flink一定就比Storm、Spark streaming好, 没有最好的框架,只有最合适的框架 。根据自身的业务、公司的技术储备选择最合适的框架才是正确的选择。

数据仓库还是数据库,数据还是在数据库里放着呢,不过是按照数据仓库的理念去设计架构和开发数据库BI项目主要运用数据仓库,OLAP,和数据挖掘的技术,细分下来又有主流数据库的开发,如oracle,db2,sqlserver, java,cognos,bo,biee,sas,spss,clementine,weka等等

SparkStreaming。

原题:spark的批处理组件是(),ASparkShell,BSparkStreaming,CSparkSQL,DBlinkDB,答案:BSparkStreaming。

组件(Component)是对数据和方法的简单封装,C++Builder中,一个组件就是一个从TComponent派生出来的特定对象。

针对普通客户端浏览和分析大数据困难的问题, 结合 Spark 和 LOD 技术, 以热图为例提出一种面向大数据可视化技术框架 首先利用 Spark 平台分层并以瓦片为单位并行计算, 然后将结果分布式存储在 HDFS 上, 最后通过web 服务器应用Ajax技术结合地理信息提供各种时空分析服务文中重点解决了数据点位置和地图之间的映射, 以及由于并行计算导致的热图瓦片之间边缘偏差这2个问题实验结果表明,该方法将数据交互 *** 作与数据绘制和计算任务分离, 为浏览器端大数据可视化提供了一个新的思路

目前大数据可视化面临的主要问题包括:

1) 数据复杂散乱 经常发生数据缺失、数据值不对、结构化程度不高

2) 迭代式分析成本高 在初次查询后如果发现结果不对, 改变查询条件重新查询代价高

3) 构建复杂工作流困难 从多数据源取得包含各种不同特征的原始数据,然后执行机器学习算法或者复杂查询, 探索过程漫长

4) 受到原有技术限制, 对小规模数据分析很难直接扩展到大数据分析

5) 数据点的规模超过普通显示器可能提供的有效像素点

Hadoop和Spark先后成为大数据分析工业界的研究热点,前者是一个能够对大量数据提供分布式处理的软件框架和文件系统(hadoopdistrib-utedfilesystem,HDFS);后者是一个通用大数据计算平台,可以解决大数据计算中的批处理、 交互查询及流式计算等核心问题Zeppelin可以作为Spark的解释器,进一步提供基于 Web 页面的数据分析和可视化协作可以输出表格、柱状图、折线图、饼状图、点图等,但是无法提供更为复杂的交互分析手段

相关工作

面向 web 的轻量级数据可视化工具主要是一些JavaScript库,利用canvas或者svg画散点,svg不能支持十亿以上的节点,使用 canvas 画布绘图的heatmapjs 在面对大数据量时也无能为力

热图是一种常用的基本数据可视化技术,通常用颜色编码数值大小,并以矩阵或方格形式整齐排列,在二维平面或者地图上呈现数据空间分布,被广泛应用在许多领域近年来,许多研究者成功地将热图应用在眼动数据可视分析上, 有效地概括并表达用户视觉注意力的累计分布

LOD针对数据可视化绘制速度慢、效率低等问题,孙敏等提出基于格网划分的LOD(levelsofdetail)分层方法, 实现对大数据集 DEM 数据的实时漫游

并行计算大数据热图

经纬度换算

并行计算

在 Spark 平台上实现热图的绘制,首先将经纬度坐标转换为对应不同瓦片上的像素坐标每个基站的辐射范围可近似认为相同, 即每个基站(收集数据的基站坐标)的初始影响力近似相同,因此可采用影响力叠加法将数据点绘制到画布上,然后做径向渐变,叠加出每个位置的影响大小,得到初始灰度图,如图2a所示然后将每一个像素点着色,根据每个像素的灰度值大小,以及调色板将灰度值映射成相对应的颜色 图 2b 是一个透明的PNG 格式, 调色板如图 2c 所示 本文中出现的热图均采用图 2c 调色板

image_1bv9vh4oqfatb5a12s4ui1sbe9png-1859kB

将计算出的热图结果存储在HDFS上,并与经纬度以及层级建立索引关系方便以后读取,拼接后的热图绘制效果如图 3 所示

image_1bv9vj0vb16um1pt91qrs17bh1jam9png-128kB

瓦片边缘问题

image_1bv9vno7315gi1l1r1gog1cdg1tdnmpng-346kB

边缘热点可能处于2片或者4片瓦片之间,因此需要通过2次或者4次重复计算通过本文提出的重叠计算方法可以解决热图分片计算的边缘问题。

实验

image_1bv9vr8311fe817tt11bb22qlr113png-2842kB

总结

本文提出的大数据热图可视化方法能够有效地解决前端绘制计算量大的问题,通过在Spark平台上以瓦片为单位分层次并行计算热图, 将生成的热图存储在HDFS上,然后通过web服务器提供浏览器交互服务, 用户可以通过在地图上拖动鼠标或放大/缩小等 *** 作选择感兴趣区域,再分析不同时间点用户行为差异或渐变过程 通过解决热图数据点和地图映射关系问题以及瓦片热图之间的边缘问题,提供大数据热图绘方法, 以满足用户交互、协同和共享等多方面需求该方法可以拓展到其他常用可视化方法,如ScatterPlot, Bar Chart,平行坐标等但绘制过程是基于Spark计算后得到的离线数据,在实时性上还不能得到保证, 在下一步工作中, 我们将着手利用 Spark Streaming 库来解决这一问题

以上就是关于怎样的架构设计才是真正的数据仓库架构全部的内容,包括:怎样的架构设计才是真正的数据仓库架构、如何学习Spark API、聊聊批计算、流计算、Hadoop、Spark、Storm、Flink等等等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9350519.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存