您好,采集未知信息的方法有很多,但最常见的方法是通过网络搜索、调查问卷、实地调查、社交媒体监测、文献研究等。
网络搜索是采集未知信息的最常用方法,可以通过搜索引擎、社交媒体网站、专业社区等获取有价值的信息。
调查问卷是一种采集未知信息的有效方法,可以通过线上调查、线下调查、电话调查等方式获取有价值的信息。
实地调查是采集未知信息的一种有效方法,可以通过实地观察、实地采访、实地采样等方式获取有价值的信息。
社交媒体监测是采集未知信息的一种有效方法,可以通过社交媒体分析、社交媒体调研等方式获取有价值的信息。
文献研究是采集未知信息的一种有效方法,可以通过文献检索、文献分析等方式获取有价值的信息。
不管是微软家的Cortana、三星家的S-voice苹果家的Siri,还是国内一些独立做语音辨认的比方讯飞、Rokid,在原理在实质上没有几差别:就是语音输入后,停止特征提取,将提取的特征值放进模型库里,再不时地停止锻炼和匹配,最终解码得到结果。
假如要细说的话就比拟复杂了,比方模型库中又分为声学模型和言语模型。其中言语模型是依据不同品种的言语,对词串停止统计建模,目前普遍采用的是基于(n-1)阶马尔可夫链统计的n元语法模型。
这里细致说下声学建模吧。首先经过前端特征提取取得声学特征,再进一步对声学特征停止统计建模。建模运用到的贝叶斯统计建模框架,也就是最大后验概率决策原则。这里算法这种深奥的东西就不说了,除非深度开发,否则直接套用就行了,我本人也是博古通今,还是念书的时分学的。
说说提取声学特征该如何完成:当语音输入之后,首先停止模电转换,将模仿信号转变为数字信号,再停止静音切除去掉无关噪音,然后停止分帧。将此时的信号分红一帧一帧之后(每一帧并不是独立存在的而是相互关联的),还要停止一系列的信号处置,包括预加重、加窗之后,再停止FFT变换之后,再经过Mel参数的滤波和取对数、离散余弦变换等一系列算法处置后,能够停止用梅尔频率倒谱系数(MFCC)停止特征提取,得到声学特征。
觉得越说越复杂了……后面简单点说吧。前面说了言语模型,而声学模型就是将声学特征统计建模后得到的。得到了模型库之后就能够停止模型锻炼和形式匹配了。
所谓模型锻炼就是指依照一定的原则,从大量已知语音形式中获取一个最具特征的模型参数。而形式匹配则相反,是依据一定原则,将未知语音形式与模型库中的某一个模型取得最佳匹配。
最后的解码过程又能够分红动态解码网络和静态解码网络两种:动态网络会编译一个状态网络并构成搜索空间,把单词转换成一个个的音素后将其依照语序拆分红状态序列,再依据音素上下文分歧性准绳将状态序列停止衔接。
而静态网络普通是针对一些特殊词(孤立词)的辨认网络,它的构造就简单多了:先将每条特殊词扩展成HMM状态序列,然后再计算得分,选择得分最大的作为辨认输出结果。由于静态网络是依据声学概率计算权重,不需求查询言语模型概率,因而解码速度很快。
这样的一个流程大致上就是语音辨认技术的主要原理。
最后再说点题外话吧,语音辨认技术其实应用以及很普遍了,比方在北美很多企业的电话自动效劳都会用到,只需用户直接说出想要的命令,就能够自动查询到需求的效劳,不需求像过去那样按键。手机应用里运用语音辨认技术比方微信的声音锁,讯飞、搜狗语音输入等等很多就不说了,而个人最看好的是声控语音拨号系统、家用机器人、智能家电等范畴,以语音交流的方式取代过去的传统人机互动。国内在这个范畴的语音辨认尝试也是相当多的,比方Rokid这样能够语音辨认命令还具有深度学习才能的家用机器人,能够自动播放视频、音乐,以至以后能够语音对话机器人叫个饿了么外卖,叫个滴滴出行等等。我今年夏天去参观过他们的语音辨认开发部门,他们用的是本人独立开发的一套流程在跑,整个语音模型库也是依据中国人发音习气(连读、口音)做的。当时测试的产品辨认度挺冷艳的,有种真正在人机交互的觉得,等于经过这个机器人接入口来控制其他电子产品,令人耳目一新。
麦克风接收语音信号。
语音信号放大。
语音信号AD转换。
语音信号关键数据提取。
对比语音数据库寻找匹配。
生成文字显示。
这个只要设置一定的空闲时间,在收到语音后如果几秒钟空闲的话就自动回车了。
语音识别系统本质上是一种模式识别系统,包括特征提取、模式匹配、参考模式库等三个基本单元。
未知语音经过话筒变换成电信号后加在识别系统的输入端,首先经过预处理,再根据人的语音特点建立语音模型,对输入的语音信号进行分析,并抽取所需的特征,在此基础上建立语音识别所需的模板。
而计算机在识别过程中要根据语音识别的模型,将计算机中存放的语音模板与输入的语音信号的特征进行比较,根据一定的搜索和匹配策略,找出一系列最优的与输入语音匹配的模板。然后根据此模板的定义,通过查表就可以给出计算机的识别结果。
语音识别技术其他关键点:
1、语料准备:人工智能,是用人工的数据“喂”出的智能。模型的训练需要提前准备大量的语音语料和文本语料,类型包括通用领域和特定领域。
2、语料处理:语料需要清洗和标注,包括元文本标准、重音标注、词法标注、句法标注、语义标注等。
3、训练:声学模型需要大量语音语料训练;语言模型需要大量文本语料训练。
4、ASR的难点包括:非特定人、非孤立词、词汇量大、长时间不间断语音。
目前,主流的大词汇量语音识别系统多采用统计模式识别技术。典型的基于统计模式识别方法的 语音识别系统由以下几个基本模块所构成
信号处理及特征提取模块。该模块的主要任务是从输入信号中提取特征,供声学模型处理。同时,它一般也包括了一些信号处理技术,以尽可能降低环境噪声、信道、说话人等因素对特征造成的影响。 统计声学模型。典型系统多采用基于一阶隐马尔科夫模型进行建模。 发音词典。发音词典包含系统所能处理的词汇集及其发音。发音词典实际提供了声学模型建模单元与语言模型建模单元间的映射。 语言模型。语言模型对系统所针对的语言进行建模。理论上,包括正则语言,上下文无关文法在内的各种语言模型都可以作为语言模型,但目前各种系统普遍采用的还是基于统计的N元文法及其变体。 解码器。解码器是语音识别系统的核心之一,其任务是对输入的信号,根据声学、语言模型及词典,寻找能够以最大概率输出该信号的词串。 从数学角度可以更加清楚的了解上述模块之间的关系。首先,统计语音识别的最基本问题是,给定输入信号或特征序列,符号集(词典),求解符号串使得:
W = argmaxP(W | O) 通过贝叶斯公式,上式可以改写为
由于对于确定的输入串O,P(O)是确定的,因此省略它并不会影响上式的最终结果,因此,一般来说语音识别所讨论的问题可以用下面的公式来表示,可以将它称为语音识别的基本公式。 W = argmaxP(O | W)P(W)
从这个角度来看,信号处理模块提供了对输入信号的预处理,也就是说,提供了从采集的语音信号(记为S)到 特征序列O的映射。而声学模型本身定义了一些更具推广性的声学建模单元,并且提供了在给定输入特征下,估计P(O | uk)的方法。
为了将声学模型建模单元串映射到符号集,就需要发音词典发挥作用。它实际上定义了映射的映射。为了表示方便,也可以定义一个由到U的全集的笛卡尔积,而发音词典则是这个笛卡尔积的一个子集。并且有:
最后,语言模型则提供了P(W)。这样,基本公式就可以更加具体的写成:
对于解码器来说,就是要在由,,ui以及时间标度t张成的搜索空间中,找到上式所指明的W。
语音识别是一门交叉学科,语音识别正逐步成为信息技术中人机接口的关键技术,语音识别技术与语音合成技术结合使人们能够甩掉键盘,通过语音命令进行 *** 作。语音技术的应用已经成为一个具有竞争性的新兴高技术产业。
与机器进行语音交流,让机器明白你说什么,这是人们长期以来梦寐以求的事情。语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技术。语音识别是一门交叉学科。近二十年来,语音识别技术取得显著进步,开始从实验室走向市场。人们预计,未来10年内,语音识别技术将进入工业、家电、通信、汽车电子、医疗、家庭服务、消费电子产品等各个领域。语音识别听写机在一些领域的应用被美国新闻界评为1997年计算机发展十件大事之一。很多专家都认为语音识别技术是2000年至2010年间信息技术领域十大重要的科技发展技术之一。
以上就是关于如何采集到未知信息全部的内容,包括:如何采集到未知信息、手机语音识别并且转化为文字的技术原理是什么,请简单说下、手机是怎样来实现语音识别的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)