进入21世纪,全球定位系统(GPS)在各方面的应用都将加强和发展。本文对GPS走向21世纪时的最新发展情况,特别是当前国际GPS服务(1GS)的产品内容、应用和服务等方面作重点介绍。
一 、GPS连续运行站网和综合服务系统的发展
在全球地基GPS连续运行站(约200个)的基础上所组成的IGS(International GPS Service),是GPS连续运行站网和综合服务系统的范例。它无偿向全球用户提供GPS各种信息,如GPS精密星历、快速星历、预报星历、IGS站坐标及其运动速率、IGS站所接收的GPS信号的相位和伪距数据、地球自转速率等。这些信息在大地测量和地球动力学方面支持了无数的科学项目,包括电离层、气象、参考框架、精密时间传递、高分辨的推算地球自转速率及其变化、地壳运动等。
(1) IGS现在提供的轨道有三类:一是最终(精密)轨道,要在10—12天以后得到它,常用于精密定位;二是快报轨道,要在1天以后得到,它常用于大气的水汽含量、电离层计算等;还有一类是预报轨道。
关于对GPS星钟偏差方面的估计,只有两个IGS分析中心提供。IGS近200个永久连续运行的全球跟踪站中,使用的外部频率标准近70个,其中约30个使用氢钟,约20个使用铯原子钟,约20个使用铷原子钟,其余的使用GPS内部的晶体震荡器。
(2) IGS还提供极移和世界时信息。IGS公布的最终的每日极坐标(x,y),其精度为±01mas,快报的相应精度为±02mas。GPS作为一种空间大地测量技术,本身并不具备测定世界时(UT)的功能,但由于一方面GPS卫星轨道参数和UT相关,另一方面,也和测定地球自转速率有关,而自转速率又是UT的时间导数,因此IGS仍能给出每天的日长(LOD)值。IGS还能进一步求定章动项和高分辨率的极移(达每2小时1次,而不是1天1次),后者主要源于IGS各观测站观测质量的提高,数据传输迅速和及时,以及数据处理方法的改进,并没有本质的改变,而前者却是技术上的一个跨跃。
(3) IGS提供的一个极为有用和重要的信息是IGS的那些连续运行站(跟踪站)的坐标、相应的框架、历元和站移动速度。前者精度好于1cm,后者精度好于1mm/y。IGS站坐标所采用的坐标参考框架是和IERS互相协调的。1993年末开始使用ITRF91,1994年使用ITRF92,1995年到1996年中期使用ITRF93,1996年中期到1998年4月一直使用ITRF94,1998年3月1日转而采用ITRF96,1999年8月1日开始IGS采用ITRF97。
(4) IGS在测定短期章动方面的新贡献。
GPS技术不能确定UT,而只能确定日长。同样这一原则也适用于章动,即GPS数据不能测定章动的经度和倾角,但能确定这些量的时间变率(对时间的导数)。基于这一原理,用了3年的每天的ψ和ε值的资料,估算短期章动项的章动振幅,并与VLBI结果作了比较。结论认为,就测定章动短周期项而言,GPS方法优于VLBI,而对超过1个月以上的长周期而言,VLBI较优。
由于对GPS技术的IGS作出了如此大的成绩和贡献,因此1999年9月各国的VLBI站和SLR站决定也组织类似于IGS的相应的IVS和IVRS。法国的DORIS和德国的PRARE也正在考虑成立类似模式的国际组织。力求使这类空间大地测量观测系统组织起来,提高效率、提高精度和可靠性。
就地区性的GPS连续运行站网和综合服务系统而言,发达国家也已做了很多这方面工作,取得了进展。在美国布设了GPS“连续运行参考站”(CORS)系统。它由美国大地测量局(NGS)负责,该系统的当前目标是(1)使美国各地的全部用户能更方便的利用它来达到厘米级水平的定位和导航;(2)促进用户利用CORS来发展GIS;(3)监测地壳形变;④求定大气中水汽分布;⑤监测电离层中自由电子浓度和分布。
截止1999年9月CORS已有156个站,而美国NGS宣布为了强化CORS系统,以每个月增加3个站的速度来改善该系统的空间覆盖率。此外,CORS的数据和信息包括接收的伪距和相位信息、站坐标、站移动速率矢量、GPS星气、站四周的气象数据等,用户可以通过信息网络,如Internet很容易下载而得到。
英国建立的“连续运行GPS参考站”(COGPS)系统的功能和目标类似于上述CORS,但结合英国本土情况还多了一项监测英伦三岛周围的海平面相对和绝对变化的任务。英国的COGPS由测绘局、环保局、气象局、农业部、海洋实验室共同负责。已有近30个GPS连续运行站,今后的打算是扩建COGPS系统和建立一个中心,其主要任务是传输、提供、归档、处理和分析GPS各站数据。
日本已建成全国近1200个GPS连续运行站网的综合服务系统。它在以监测地壳形变、预报地震为主功能的基础上,结合气象和大气部门开展GPS大气学的服务。
二、 GPS应用于电离层监测
GPS在监测电离层方面的应用,也是GPS空间气象学的开端。太空中充满了等离子体、宇宙线粒子、各种波段的电磁辐射,由于太阳常在1秒钟内抛出百万吨量级的带电物,电离层由此而受到强烈干扰,这是空间气象学研究的一个对象。通过测定电离层对GPS讯号的延迟来确定在单位体积内总自由电子含量(TEC),以建立全球的电离层数字模型。
GPS卫星发射L1和L2。两个载波。由这两个载波可以削弱电离层对GPS定位的影响,或者说可以求定电离层折射。因为这一折射和载波频率有关。
当人们建立地区或全球电离层数字模型时,总是作简化的假定,所有自由电子含量都表示在一个单层面上,该面离地面高为H。这样的话,电子含量正可以用在接收机和卫星连线与此单层面交点(刺入点)处的电子含量Es表示,它可以视为E与刺入点处天顶距Z'的函数Ecos Z'=Es。可以将在球面上的电子浓度Es加以模型化,例如写成经纬度的球谐函数等,这方面有很多专家提出了各种模型。IGS提出了一种电离层地图的交换格式(10nosphere Map Exchange Format,IONEX—Format),它的作用是使基于各种理论和技术所获得的电离层地图能在统一规格的基础上进行综合和比较。电离层模型有各不相同的理论基础,而取得的数据来源的技术也不同,数据覆盖面也不完整,所以只能将IGS和全球各种TEC的图和GPS卫星讯号的差分码偏差(differential code biases—DCBS)用IONEX形式向全世界用户提供,下一步将通过比较,逐步联合起来。
三、 GPS应用于对流层监测
在GPS应用中,早期主要是轨道误差影响定位精度,而且早期的GPS基线相对来说比较短,高差不大,因此对对流层的研究没有给予很大的重视。直到由于GPS轨道精度大大提高后,对流层折射已成为限制GPS定位精度提高的一个重要障碍。假设一个高程基本为零的地区,接收机所接收的GPS讯号从天顶方向传来的话,其延迟可以达到2.2—2.6m这一量级,而2小时内这一延迟变化可达10cm不是少见的(所以IGS分析中心提供的对流层参数是用2小时间隔一次)。也由于这个实际情况,对流层折射要顾及其随机过程的变化来加以模型化。
在GPS应用于对流层研究中,IGS的快速轨道和预报轨道信息对于天气预报会起重大作用。此外,IGS通过德国GFZ的“IGS对流层比较和协调中心”提供的每2小时的对流层天顶延迟系列就象是控制点,对于区域性或局部性的对流层研究来说,可以起到对流层延迟绝对值的标定作用。
与地基GPS大气监测不同,星基或空基GPS掩星法测定气象的技术有覆盖面广,垂直分辨好,数据获取速度快的优点。这一技术的原理是将GPS接收机放在某一低轨卫星(LEO)或飞行器的平台上,该GPS接收机一方面起到对该卫星(或飞行器)精确定轨的作用,同时又应用GPS掩星技术起到大气探测器的作用。在1997年进行的GPS/MET研究项目,证实了这个设想是可行的。预定于2000年4月发射的CHAMP卫星要利用GPS掩星法进行全球对流层折射(包括大气可降水分)的测定。
在今后几年中,还有阿根廷的SAC—C,中国台湾的COS—MIC,这些LEO卫星都要用星载GPS来定轨和利用掩星法测大气。
今后利用星载GPS的气象和电子浓度截面数值,结合地面GPS站数据,作成层折图像提供使用。今后3年中GPS/MET项目研究还要进行6次,预计它将在天气预报、空间天气预报、气象监测方面做出巨大贡献。
四 、GPS作为卫星测高仪的应用
多路径效应是GPS定位中的一种噪音,至今仍是高精度GPS定位中一个很不容易解决的“干扰”。过去几年利用大气对GPS信号延迟的噪声发展了GPS大气学,也正在利用GPS定位中的多路径效应发展GPS测高技术,即利用空载GPS作为测高仪进行测高。它是通过利用海面或冰面所反射的GPS信号,求定海面或冰面地形,测定波浪形态,洋流速度和方向。通常卫星测高或空载测高测的是一个点,连续测量结果在反向面上是一个截面,而GPS测高则是测量有一定宽度的带,因此可以测定反射表面的起伏(地形)。据报告,试验时在空载平面安装2台GPS接收机,1台天线向上用于对载体的定位,1台天线向下,用于接收GPS在反射面上的讯号。美国在海上作了测定洋流和波浪的试验。丹麦在格凌兰作了测定冰面地形及其变化的试验。
五 、卫星一卫星追踪技术
卫星对卫星的追踪(SST)技术的实质是高分辨率的测定2颗卫星间的距离变化,一般它分为两类,即高低卫星追踪和低低卫星追踪。前一类是高轨卫星(如对地静止卫星,GPS卫星等)追踪低轨(LEO)卫星或空间飞行器,后一类是处于大体为同一低轨道(LEO)上的2颗卫星之间的追踪,2颗卫星间可以相距数百千米,这两类SST技术都将LEO卫星作为地球重力场的传感器,以卫星间单向或双向的微波测距系统测定卫星间的相对速度及其变率。这一速度的不规则变化所反映的信息中,就包含了地球重力场信息。卫星轨道愈低,这一速度变化受重力场的影响愈明显,所反映重力场的分辨率也愈高。
这两类SST技术中,以高低卫星追踪所获得的信息比较丰富,这是因为:
高轨卫星,特别是有多个高轨卫星(如GPS)能获得低轨卫星处于大部分轨道上所传递的信息;(2)对地面重力场的中波、长波、短波信息都能恢复;(3)不同于低轨卫星,高轨卫星受重力场影响比较小,因此卫星间速度变化能比较好的反映重力场信息,同时高卫星的轨道也比较容易精确的求定。
SST技术的第一次试验是在1975年进行的,高轨卫星是对地静止卫星(GEO)ETS一6,而低轨卫星为NIMBUS—6和APOLLO—SYYUS,但由于观测值的分辨率和精度太低(低于10μm/s),而没有取得很满意的成果,因此NASA放弃了此项研究;一直到1991年,利用GPS卫星作高轨卫星再次进行了试验,用LANDSAT作为低轨卫星,在该卫星平面上装GPS接收机,进行定轨和测定高低卫星间距离及其变率的试验,后来在T/P海洋测高卫星上也作过类似试验,也由于测定距离及其变率的分辨率和精度不高,而没有令人满意的结果;这次欧空局(ESA)在德国(GFZ)主持下所发射的CHAMP,GRACE和GOCE3颗卫星,在今后10年中将专门进行SST和卫星重力梯度测量(SGG)的试验,以改善对地球重力场的认识。
IGS认为持续地支持低轨卫星(LEO)是它的一项重要任务方面,因此专门建立了LEO工作组。LEO工作组制定了工作计划,并提出了一些建议:①建立IGS为追踪LEO的相应标准化地面站网,以满足LEO的要求;②IGS以短于24小时速率,对这些地面站网的数据进行传输和处理,提供LEO所需要的数据和产品;③为地面站网的GPS 1 Hz采样率数据建立相应的GPS数据交换格式;④了解调查IGS精密轨道对LEO平台上GPS数据采集的作用和意义。
1994年GPS就全面进入正式运行,该系统由21颗卫星组成,分别沿6个轨道平面运行,还有3颗卫星一直处于热备份状态,总计24颗但在轨道上运行的GPS卫星总数实际上是变动的,在1998年就有27颗GPS卫星在轨道上运行若从与赤道面55°倾角算第一个轨道面,则其他5个轨道面均以此为基础,彼此各以60°角度相交
(2)关于对GPS星钟偏差方面的估计,只有两个IGS分析中心提供IGS近200个永久连续运行的全球跟踪站中,使用的外部频率标准近70个,其中约30个使用氢钟,约20个使用铯原子钟,约20个使用铷原子钟,其余的使用GPS内部的晶体震荡器
(3)IGS还提供极移和世界时信息(参见表1)IGS公布的最终的每日极坐标(x,y),其精度为±0 1m a s,快报的相应精度为±0 2m a sGPS作为一种空间大地测量技术,本身并不具备测定世界时(U T)的功能,但由于一方面GPS卫星轨道参数和U T相关,另一方面,也和测定地球自转速率有关,而自转速率又是U T的时间导数,因此IGS仍能给出每天的日长(LOD)值IGS还能进一步求定章动项和高分辨率的极移(达每2小时1次,而不是1天1次),后者主要源于IGS各观测站观测质量的提高,数据传输迅速和及时,以及数据处理方法的改进,并没有本质的改变,而前者却是技术上的一个跨跃
(4)IGS提供的一个极为有用和重要的信息是IGS的那些连续运行站(跟踪站)的坐标,相应的框架,历元和站移动速率,前者精度好于1cm,后者精度好于1mm aIGS站坐标所采用的坐标参考框架是和IER S互相协调的1993年末开始使用ITR F91,1994年使用ITR F92,1995年到1996年中期使用ITR F93,1996年中期到1998年4月一直使用ITR F94,1998年3月1日转而采用ITR F96,1999年8月1日开始IGS采用1TR F97
(5)IGS在测定短期章动方面的新贡献众所周知,地球自转轴在地球表面上的移动称为极移,而它在惯性空间中的运动称为岁差和章动GPS技术不能确定U T,而只能确定日长同样这一原则也适用于章动,即GPS数据不能测定章动的经度和倾角,但能确定这些量的时间变率(对时间的导数)基于这一原理,用了3年的每天的W和E值的资料,估算短期章动项的章动振幅,并与VLB I结果作了比较,结论认为,就测定章动短周期项而言,GPS方法优于VLB I,而对超过一个月以上的长周期而言,VLB I较优
由于对于GPS技术的IGS作出了如此大的成绩和贡献,因此在1999年9月各国的VLB I站和SL R站决定组织类似于IGS的相应的IV S和IL R S法国的DO R IS和德国的PRA R E也正在考虑成立类似模式的国际组织力求使这类空间大地测量观测系统组织起来,提高效率,提高精度和可靠性
您好,精密星历是一种计算天体位置和运动的方法,它可以用来预测天体在不同时间、不同地点的位置和运动情况。精密星历的计算需要大量的天文学知识和高级数学技能,因此需要专门的软件和计算机来支持。
虽然精密星历可以在同一天内多次运行,但是每次运行得到的结果可能会有所不同。这是因为精密星历的计算涉及到很多的参数和变量,比如天体的质量、速度、轨道等等,这些参数和变量都是不断变化的。另外,精密星历的计算还受到天气、地球自转等因素的影响,因此同一天内多次运行得到的结果可能会有所不同。
为了获得更加准确的结果,一般需要将多次计算得到的结果进行平均,或者选择多个时间点进行计算,然后综合得出一个较为准确的结果。同时,为了避免误差和偏差的积累,精密星历的计算也需要进行定期的更新和修正。
综上所述,精密星历可以在同一天内多次运行,但是需要注意结果可能会有所不同,需要进行多次计算并综合得出一个较为准确的结果。
不允许,小范围的gps网可以替代,而大网,尤其是igs站点的,是不允许的,必须用brdc或者auto的,导航是导航nav,星历文件是sp3(精密星历)。ps:brdc格式: brdc(天数)0。(年)nav,如你说的333是天数。04n是指04年的导航文件
在我国西藏、新疆、青海等边疆省份,矿产资源丰富,但开发历史较短,矿业权分布比较零散。由于国家基础控制点分布和保存比较差,受地方测绘手段限制,矿业权人的活动范围与法定许可范围可能会相差较大。矿业权周围往往没有其他矿业权,不存在纠纷。本次矿业权实地核查工作开展后发现了这一问题。为了开展基础测量工作,对国家控制点稀少地区基础控制测量方法做了深入研究。
(一)精密单点定位
精密单点定位(precise point positioning,PPP)也称作3P技术,指的是利用全球若干地面跟踪站的GPS观测数据计算出的精密卫星轨道和卫星钟差,对单台GPS接收机所采集的相位和伪距观测值进行定位解算。利用这种预报的GPS卫星的精密星历或事后的精密星历作为已知坐标起算数据,同时利用某种方式得到的精密卫星钟差来替代用户GPS定位观测值方程中的卫星钟差参数,用户利用单台GPS双频双码接收机的观测数据在数千万平方千米乃至全球范围内的任意位置进行实时动态定位都可以达到02~04米级的精度,快速的静态定位可以达到2~4厘米级的精度。精密单点定位技术是实现全球精密实时动态定位与导航的关键技术,也是GPS定位方面的前沿研究方向。GPS精密单点定位采用单台双频GPS接收机,利用IGS提供的精密星历和卫星钟差,基于载波相位观测值进行的高精度定位。所解算出来的坐标和使用的IGS精密星历的坐标框架即ITR F框架系列一致,而不是常用的WGS-84坐标系统下的坐标。因此,IGS精密星历与GPS广播星历所对应的参考框架不同。在精密单点定位中,双频观测值组合,消除电离层延迟;不同类型观测值的组合,不但消除电离层延迟,也消除了卫星钟差、接收机钟差;不同类型的单频观测值之间的线性组合消除了伪距测量的噪声,观测时间要足够的长,才能保证精度。
国家在西藏、青海、新疆等地区的基础控制比较薄弱。国家基础控制点由于年代久远,基本损失殆尽,有些地区基本地形图缺少,山区或高山区有些地方连1∶100000图都没有,有些地区有西部测图的控制点,但实地没标志。要准确定位采矿权人的活动范围是一件不容易的事。边远的少数民族区域,高山上的控制点有的设置了经堆或庙宇,点位已被破坏。
全球定位系统的应用,使得利用现代测量手段在无控制区作业,已成为比较简单的事。国家测绘局在西部测图中已广泛应用。我国现在有不少地面卫星跟踪站,IGS网站也有精密星历下载,可以提高GPS单点定位的精度,国家测绘局在西部测图中有不少GPS点,这些点实地可能没有标志,但是,可以比较准确的求得每点的WGS-84坐标系、1980西安坐标系、1954年北京坐标系的坐标,数据是没有问题的,可以满足本次矿业权实地核查的需要。
(二)无控制区或控制稀少区基础控制的作业方法
无控制区或控制稀少区基础控制的作业基本做法是:如果测区周围100千米范围确实没有国家大地控制点,可以在WGS-84坐标系中,先用双频GPS做控制网;选取接收条件好的位置,固定3~4个点单点定位,采用静态模式连续稳定测量5小时以上,将观测的数据由WGS-84坐标转换为1980西安坐标;将固定点的大地坐标提交国家测绘局大地数据处理中心转换成1980西安坐标系,利用转换结果在1980西安坐标系中约束平差。如地方上有1985国家高程基准成果,可以采用拟合高程。
我们以额哈铁路(额济纳到哈密)成果作为实验,无约束平差成果经国家测绘局解算后与正确值比较无控制作业的精度在2米,如表4-21。
表4-21 无控制作业试验结果对比
从表4-21可以看出,X 方向普遍大2米,Y方向误差01米,加入精密星历后2米的系统误差可以消除,可以保证精度在02~03米。这对矿业权管理来说精度已经足够了(采矿权登记坐标的精度是整米),内部符合非常好,绝对精度可以保证在03米以内,真实位置在短期内是无法解决的。利用单点定位的成果,加入卫星的精密星历和钟差,可以大幅度的提高单点定位的精度,利用观测的基线组成同步环和异步环,可以计算出个点的WGS-84坐标,国家测绘局可以转换为1954年北京坐标和1980西安坐标,测区的转换参数就可以解决了。一个区域内的相互关系不管平面还是高程都是没有问题的。对于控制点稀少地区,只要找到一个三角点,就可以请国家测绘局转换为WGS-84坐标,利用这个点的坐标进行三维约束平差,就可得到准确的WGS-84 坐标。一些地区控制点稀少,如果作二等控制作为首级控制,那就必须有一等起算点,才能发展二等点。有些县没有一等点,二等点也不全,可以用GPS接收机做静态检查原二等控制网。检查时可在缺点的地方增加一些点,以满足二等控制的边长需要,这样只需要使用原二等控制点作为起算点,也可以满足首级二等控制的需要。主要问题是原二等点的高程不可靠,向控制点引高程就成为主要矛盾,根据矿业权核查的要求可以使用似大地水准面精化。具体做法是把找到的二等点选2~3个交国家测绘局转换成WGS-84坐标,使用此成果在WGS-84坐标中做三维约束平差,可以得到各点的WGS-84坐标,利用WGS-84坐标作似大地水准面精化,就可以解算网中各点的1985国家高程基准高程。似大地水准面精化也可使高程达到相应的精度。
因为原控制点具有1954年北京坐标系、1980西安坐标系两套坐标,接下来在1954年北京坐标系统、1980西安坐标系统中做二维约束平差。因为原控制点不是直接边长,现在的GPS可以测到直接边长,精度比较高,所以布网时要考虑网的大小,一般不超过10000平方千米,避免在当地坐标系统中计算不能通过。
CORS全称Continuously Operating Reference Stations,中文名连续运行参考站,是卫星定位技术、计算机网络技术、数字通讯技术等高新科技多方位、深度结晶的产物。
CORS系统由基准站网、数据处理中心、数据传输系统、定位导航数据播发系统、用户应用系统五个部分组成,各基准站与监控分析中心间通过数据传输系统连接成一体,形成专用网络。
扩展资料:
CORS在我国实际应用:
深圳市建立了国内第一个CORS系统,并已开始全面测量应用。类似的省市CORS体系已经或正在中国的一些省市建立,如广东省、江苏省、北京、天津、上海、广州、东莞、成都、武汉、昆明、重庆和青岛。
建立CDCORS四川地震局已经运行超过三年,其主要目的是用于监测四川地震灾区,但势函数的挖掘,在开发、利用GPS大地测量,通过拨号登录授权,对外开放网络访问,实现用户实时高精度差分定位,取得了一定的效益。四川省启动了全省北斗卫星导航网络建设。
除了政府的基本构造和应用外,CORS系统在商业领域的应用也进入了实际运行阶段。星威信息技术基于CORS技术构建的港口运输车高精度定位系统,有效解决了港口车辆物流密度大、机动性强导致的定位精度不高、调度不畅的问题。
参考资料来源:百度百科——CORS
GPS 系统的组成 空间部分:24 颗卫星 (21 颗工作卫星+3 颗备用卫星 ) 6 个近圆形轨道面, , 高度约 20200km, 地面控制部分: 1 个主控站、5 个监测站、3 个注入站 用户设备部分: 用户设备主要是 GPS 接收机, 它由天线前置放大器、 信号处理、 控制与显示、 记录和供电单元组成。
忘采纳
以上就是关于卫星定位的新世纪全部的内容,包括:卫星定位的新世纪、精密星历不是同一天能运行吗、请教gamit中nav文件,星历文件的有关问题等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)