数据与功能服务

数据与功能服务,第1张

海洋信息网格中,空间数据是以 Web 服务的形式对外提供的,这些空间数据服务广泛分布在广域网中,并发布在网格资源管理调度中心,当系统需要数据时,只需要查找相应的数据服务,加载到本地,即可进行相应的 *** 作。海洋信息网格平台包含三种数据服务: Argo 数据服务、海洋矢量场数据服务和海洋标量场数据服务。Argo 数据服务包括二维数据服务和三维数据服务,分别是由 ArgoDataService 和 ArgoData3DService 两个 Web 服务提供的; 海洋矢量场二维数据服务是基于 CurrentsDataService,OceanCurrents,Winds-DataService,OceanWinds 四个 Web 服务提供的,海洋矢量场三维数据服务是由 CurrentDa-ta3DService 服务提供的。海洋标量场数据服务也包括二维数据服务和三维数据服务,分别是由 ScalarDataService 和 ScalarData3DService 这两个 Web 服务提供的,层次关系如图 61所示:

表 61 空间服务的顶级分类

6111 Argo 数据服务

Argo 数 据 网 格 服 务 模 块 主 要 提 供 两 个 Web 服 务: ArgoDataService 和ArgoData3DService,其中 ArgoDataService 为二维服务,ArgoData3DService 为三维服务。Ar-goDataService 服务提供 Argo 数据的各种 *** 作及分析功能,主要包括两个子功能: ①Argo数据信息请求,该功能向用户提供可以使用的 Argo 数据信息,包括 Argo 浮标编号、周期、某一剖面的温度、盐度、压力等; ②Argo 数据的温、盐、密图的生成,该功能提供两种方式: 根据空间位置选生成曲线图; 根据属性生成曲线图。

图 61 数据服务层次结构

二维服务模块的功能主要体现在 ArgoDataService 这个 Web 服务的三个方法上,即 Ar-go 数据服务、Argo 曲线图生成服务(按空间位置)、Argo 曲线图生成服务(按属性)。基于 Web 页面,用户使用相应的方法,可以得到预期的结果。功能可用图 62 表示为:

图 62 Argo 数据模型图

Argo 数据三维网格服务 ArgoData3DService,是从发布的 Argo 服务(MapService 或者GlobeService)中获取 Argo 数据,然后在海洋信息网格多维 *** 作分析平台中根据所得到的Argo 数据,生成 Argo 在垂直方向上的三维温度曲线图,三维盐度曲线图,实现对海洋温度场,盐度场的时空变化分析,其可视化效果如彩图 61,62 所示。

6112 海洋矢量场数据网格服务

海洋矢量场数据模块的实现主要是由四个二维数据服务 CurrentsDataService,Ocean-Currents,WindsDataService,OceanWinds 和一个三维数据服务 CurrentsData3DService 这五个Web 服务的,下面分别介绍这五个 Web Services。

(1)CurrentsDataService 服务。该服务向用户提供在网格资源管理调度中心所注册的所有海流数据目录列表,用户通过查询可以得到海流数据的列表,可以知道目前服务器端提供了哪些海流数据,从而可以根据自身的需要选择某一海流数据进行相应的应用分析(图 63)。

图 63 海洋流场数据请求图

(2)OceanCurrents 服务。该服务提供对海流数据的三种功能服务: 包括海洋流场数据显示、海洋流场数据属性查询和海洋流场数据过程化显示。该服务需要保证坐标数据和时间数据的有效性。对于属性查询而言,其 *** 作过程是通过空间坐标选取而获得相应选取点的海流数据属性,因而在进行空间选择时需要保证空间选取的准确性。对于时间序列的可视化应保证时间序列的正确性,应和现实时间序列相对应(图 64)。

图 64 海洋流场数据查询与过程化服务图

(3)WindsDataService 服务。该服务向用户提供网格资源管理调度中心发布的所有海风数据目录列表。由于海风数据和海流数据都是矢量数据,因而其处理方式与海流数据的处理方式有很多相同的地方。对于海流数据其管理方式同样是文件管理,所不同的是其管理的文件格式为 NetCDF 文件(图 65)。

图 65 风场数据请求图

(4)OceanWinds 服务。该服务提供对海风数据处理与分析功能,包括海洋风场数据显示,海洋风场数据属性查询,海洋风场数据玫瑰图生成和海洋风场数据过程化显示(图 66)。

图 66 海洋风场查询与过程化服务图

(5)CurrentsData3DService 服务。海洋矢量场三维显示与功能分析服务提供对海洋矢量数据的三维可视化与三维 *** 作分析功能。

对于海洋数据而言,其具有动态性和多维性。因而,利用观测的海洋数据对海洋中的要素进行多维可视化表达,并提供多维的可视化分析功能能够更加直观地展示海洋要素的现象和过程,有利于对海洋要素的分析和利用,进而更加直观的认识海洋。

在该服务中,由于系统所选择的结构为松耦合,各功能的实现都基于 Web Service,因而需要保证服务的稳定性。在调用服务时需要判断返回值的状态,以判断服务是否正确执行。同时由于 Web 服务的请求具有时间限制,因而在调用时须保证拥有足够的调用时间。通常可以将调用时间设为无限长。

该服务主要提供了对海流数据三维可视化表达与分析功能(图 67)。具体功能如下:

图 67 海流数据三维可视化表达与分析功能图

生成的曲线图包括 a、任意点某一时刻不同海深流速曲线图; b、任意点某一时刻不同海深水平流速曲线图; c、任意点某一时刻不同海深垂直流速曲线图。对于该功能可以分为竖直剖面时间序列的显示,水平剖面时间序列的显示,以及体过程的时间序列的显示。

6113 海洋标量场数据网格服务

该服务主要提供对海洋标量场数据进行 GIS 的可视化和分析功能。海洋的温、盐、密、浪、潮、流等数据具有很强的动态性和多样性,单纯用或多帧的可视化方式进行表达,不能满足对任意时间和空间的查询需求,同时也很难满足用户获取海洋标量场时空动态变化的需求,无法满足海洋现象的网络实时定量化分析和高精度定量计算的需求。总之,无法实现用户与网络的 “交互”需求。在海洋分析领域,通常对各要素以场为对象进行处理,以求海洋数据的发布具有动态连续性,并能动态显示诸多海洋现象的变化过程。

海洋地理信息系统将海洋过程从现实海洋客观中抽象出来,使之成为能够在数字世界中表达现实海洋客观的动态图景,该图景描述了海洋中物质能量在时空中的形态、结构、过程、关系、功能的分布方式和分布格局。海洋地理信息系统中的时空过程是一个逻辑缩小的、高度信息化的对象,从视觉、计量和逻辑上对过程对象在功能形态等方面进行模拟,信息的流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。在海洋地理信息系统的支持下提取海洋现象或过程的各个不同侧面、不同层次的空间和时间特征,也可以快速的模拟海洋过程的演变和思维的过程。

海洋地理信息系统可视化将抽象的数据信息转化为静态或动态的图形图像,以便研究者能够观察其模拟和计算的过程和结果。可视化包括图像的理解和综合,用来解释图像数据和根据复杂的多维数据生成图像,交互是 “人—机”怎样协调一致的接受、使用和交流视觉信息。

海洋地理信息系统实现对海洋中时空过程及其关系的数值化模拟,使用户对于在时空中各时空过程有一个非常直观的感受。无论是在屏幕上展示一个可以无级缩放和信息查询的海洋表面温度变化过程,还是展现一个剖面的时间动态过程,对海洋现象的时空关系认识更为具体、直观。

因此,本服务从海洋标量场数据的网络服务这一需求出发,实现海洋标量场时空过程可视化和分析,实现海洋标量场数据的远程定位查询,海洋标量场时间变化的动态可视化表达,海洋标量场时间变化的趋势分析及时空变化的过程网络动态模拟。

在具体实现上,为了体现网格的特点,通过以实现具体功能的 Web Service 的功能服务和提供数据的 ArcGIS Server MapService 一起完成具体的功能服务。完成具体功能的 WebService 和提供数据的 ArcGIS Server MapService 都符合 Web Service 技术标准,具有通用性和扩展性。

海洋标量场数据网格服务模块主要是基于 ScalarDataServcie 这个 Web 服务的,下面将介绍该服务。

(1)ScalarDataService 服务。海洋标量场主要是海洋中一些只有数据值大小而无方向的数据,在表达中为了实现海洋动态的特点,主要分两个功能实现,一个是定点的海洋时间序列数据的动态过程可视化分析,主要以温度曲线的形式来实现; 二是实现海洋大面的场数据时间序列的动态模拟表达,以表达海洋表面的动态变化。本服务主要选择对海洋表面温度场和叶绿素场进行动态表达。

在该 Web 服务中实现海洋标量场数据的应用主要包含两个方面,一个是定点的海洋时间序列数据的动态过程可视化分析,主要以温度曲线的形式来实现; 二是实现海洋大面数据的时间序列的动态模拟表达。对于 ScalarDataServcie 这个 Web 服务中两个方面应用的实现流程如图 68,69 所示。

图 68 标量场过程曲线功能流程图

图 69 标量场大面动态模拟流程图

在具体编码过程中,按照上面的流程编写海洋表面温度和叶绿素的过程曲线功能和海洋大面标量场数据的动态演进功能,根据需要具体设置接口参数。

标量场数据三维网格服务模块的详细设计说明主要针对 ScalarData3DService 这个 Web服务,下面将具体说明 Web 服务 ScalarData3DService。

(2)ScalarData3DService 服务。该服务基于发布的海洋标量场数据服务(MapService或 GlobeService),从海洋标量场数据服务中检索出相应的数据,并根据检索得到的数据,生成剖面图以及三维展示效果图,实现对海洋标量场的时空变化分析。其效果如彩图63,64 所示。

海洋卫星(Ocean satellite)是主要用于海洋水 素的探测,为海洋生物的资源开放利用、海洋污染监测与防治、海岸带资源开发、海洋科学研究等领域服务,设计发射的一种人造地球卫星。2020年前我国将发射8颗海洋系列卫星,包括4颗海洋水色卫星、2颗海洋动力环境卫星和2颗海陆雷达卫星,加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测。

基本介绍 中文名 :海洋卫星 外文名 :Ocean satellite 主要用于 :海洋水 素的探测 类型 :人造地球卫星 用途 :海洋科学研究等领域服务 定义,特点,用途,发展历程,中国规划,发展目标,水色卫星,动力环境,环境综合,发展情况,监视卫星,大事记, 定义 卫星海洋遥感技术在海洋资源,环境,减灾和科学研究等方面 海洋卫星发挥了不可替代的重要作用,世界各国的海洋卫星和以海洋观测为主的在轨卫星已有30多颗。 海洋卫星 海洋卫星是地球观测卫星中的一个重要分支,是在气象卫星和陆地资源卫星的基础上发展起来的,属于高档次的地球观测卫星,包括军用海洋监视卫星、综合性的海洋观测卫星、各种专用的海洋学研究卫星等。 特点 利用海洋卫星可以经济、方便地对大面积海域实现实时、同步、连续的监测,它已被公认为是海洋环境监测的重要手段。海洋卫星与陆地卫星和气象卫星相比,具有以下特点: 海洋卫星 (1) 海洋环境要素探测要求大面积、连续、同步或准同步探测。 (2) 海洋卫星可见光感测器要求波段多而窄,灵敏度和信噪比高(高出陆地卫星一个数量级)。 (3) 为与海洋环境要素变化周期相匹配,海洋卫星的地面覆盖周期要求2~3天,空间解析度为250~1000m。 (4) 由于水体的辐射强度微弱,而要使辐射强度均匀,具有可对比性,则要求水色卫星的降交点地方时(发射视窗)选择在正午前后。 (5) 某些海洋要素的测量,例如海面粗糙的测量、海面风场的测量,除海洋卫星探测技术外,尚无其他办法。 用途 海洋卫星有六个方面的用途。 1、 为海洋专属经济区(EEZ)综合管理和维护国家海洋权益服务 。海洋卫星一方面可为EEZ划界的外交谈判提供海洋环境和资源信息,尤其是那些调查船及飞机难以进入的敏感海域。 海洋卫星 2、提高海洋环境监测预报能力 。 我国地处西北太平洋西岸,该海域是全世界38%热带风暴的发源地。我国深受其害,平常年份造成的直接经济损失为60亿元左右,严重年份超过100亿元。1997年的“9711”特大风暴袭击浙江沿海,仅浙江省直接经济损失达170多亿元。 3、为海洋资源调查与开发服务 。 海洋资源主要是海洋油气、海洋渔业和海岸带资源。我国40多个近海渔场普遍出现衰竭现象,迫切需要发展远洋渔业。我国在海外现有1000多艘远洋渔船,形成3亿美元的资产和50万吨的远洋渔业生产能力,蛤全球渔场信息困乏制约了远洋渔业的进一步发展。 海洋卫星 4、加强海洋军事活动保障 。 人造卫星及中、远程飞d发射后d道轨道的计算必须以全球大地水准面、重力场为基本参量,而我国在这方面数据非常稀少,因而极大地影响了飞d命中率。另外,实时的海况、流场、海面风速资料对海军水下舰艇的作战与航行意义重大,这些资料是常规方法无法获得的,特别是敌方海区的实时海况。 5、 有利于实施海洋污染监测、监视,保护海洋自然环境资源 。 海洋污染主要是石油污染和污水污染。海上石油污染来自陆源排放、海上油井泄漏及船舶排放等,其中陆源排放量最多。我国沿海约有250多处油污染源,每年排放量10万t以上。 6、 发展海洋卫星有利于加强全球气候演变研究,提高对灾害性气候的预测能力 。 海水温度是影响中长期天气过程的重要因子。研究表明,台风生成与海温关系密切,中国南海台风生成前24h海温平均27℃;太平洋东岸冬季海温与西岸次年夏季风强度呈负相关。 发展历程 自美国1978年6月22日发射世界上第一颗海洋卫星Seasat-A以后,苏联、日本、法国和欧洲空间局等相继发射了一系列大型海洋卫星。这些卫星一般搭载有光学遥感器(如水色扫瞄器、主动区微波遥感器、散射计、SAR等)和被动式微波遥感器等多种海洋遥感有效载荷,可提供全天时,全天候海况实时资料。 海洋卫星 按用途分,海洋卫星可分为海洋水色卫星、海洋动力环境卫星和海洋综合探测卫星。 能研制和发射海洋水色卫星的国家有中国、美国、俄罗斯、印度、韩国等。1997年8月1日,美国航天局发射了世界上第一颗专用海洋水色卫星SeaStar。美国计画自SeaStar起,进行20年时序全球海洋水色遥感资料的连续积累。1999年1月27日,中国台湾省委托美国研制并发射一颗低轨道(600km)水色卫星ROCSAT-1,星上有效载荷为6通道水色遥感器(OCI)2002年5月和2007年4月,中国海洋水色卫星海洋一号A和海洋一号B分别成功发射,海洋动力环境卫星海洋二号预计于2009发射,海洋综合探测卫星海洋三号也已进入预先研究阶段。 海洋卫星 利用卫星遥感器测量海洋动力环境的构想在20世纪60年代就有人提出,70年代得以实施。发射海洋动力环境卫星的国家有美国、俄罗斯、法国。美国的GEOSAT系列卫星和TOPEX/Poseidon系列卫星具有代表性。 1991年,欧洲空间局发射ERS-1卫星,星上装有微波散射计、雷达高度计和微波辐射计等遥感器,主要目的是开展卫星测量海洋动力基本要素,为用户进行业务服务及为世界大洋合作研究项目提供业务服务参数(包括海面风场、大地水准面、海洋重力场、极地海冻的面积、边界线、海况、风速、海面温度和水气等)。散射计风速测量精度为2m/s或10%、风向精度为±20°;高度计的测高精度为3cm;辐射计测量海面温度精度为±5K。ENVISAT-1卫星是ERS卫星的后继星,2001年底发射,是一颗篝的有轨对地观察卫星,将进行为期5年的对大气海洋、陆地、冻的测量。该星测验数据连续,主要支持地球科学研究,并且可以对环境和气候的变化做出评估,甚至可以为军事、商业的套用提供便利。 海洋卫星 海洋卫星 2002年5月和2007年4月,中国海洋水色卫星海洋一号A和海洋一号B分别成功发射。[1] 2012年9月,国家海洋局国家卫星海洋套用中心表示2020年前,将发射8颗海洋系列卫星,形成对国家全部管辖海域乃至全球海洋水色环境和动力环境遥感监测的能力,同时加强对黄岩岛、钓鱼岛以及西沙、中沙和南沙群岛全部岛屿附近海域的监测。从太空监测海洋已成为世界各国探索海洋的重要方式。[2] 海洋综合探测卫星方面,1992年美国和法国联合发射TOPEX/Poseidon卫星。星上载有一台美国NASA的TOPEX双频高度计和一台法国CNES的Poseidon高度计,用于探测大洋环流、海况、极地海冰,研究这些因素对全球气候变化的影响。TOPEX/Poseidon高度计的运行结果表明其测高精度达到2cm。 JASON-1星是TOPEX/Poseidon的一颗后继卫星,主要任务目标是精确的测量世界海洋地形图。该星装有高精度雷达高度计、微波辐射计、DORIS接收机、雷射反射器、GPS接收机等,其中雷达高度计测量误差约25cm。JASON卫星轨道高度1336km,倾角66°,设计寿命为3年,最大功耗为435W,总重量为500kg。 中国规划 与世界先进水平相比,总体上我国差距较大,主要表现在我国海洋卫星工程起步晚、星载仪器的飞行会小、海洋卫星地面套用系统基本建成但业务化套用还需完善等方面。为此,要坚持独立研制;建立海洋卫星体系,逐步形成业务化运行能力;要实行军民结合,综合利用;重视关键技术储备;同时发展卫星海洋的套用;积极参与国际合作。 发展目标 其中,“十五”期间要发射我国第一颗试验业务型海洋水色卫星,此后每2~3年发射一颗业务型海洋水色卫星,使海洋水色形成系列化卫星。“十五”期间还要开展海洋动力环境卫星关键技术攻关,卫星研制立项。2005~2015年,将继续发射海洋水色卫星系列卫星,发射三颗海洋动力环境卫星,两颗海洋环境综合卫星;建立三种类型系列卫星组成的我国地球海洋观测系统框架,开始全面为国发经济服务。 根据海洋专家建议,总体发展目标是:2015年建立起海洋水色卫星、海洋动力环境卫星、海洋环境综合卫星3个业务化运行的卫星系列;2015年使我国的海洋卫星及其应 用水平达到国际2005年的水平,在国际社会中占有一席之地。 海洋卫星拍摄的 水色卫星 海洋水色卫星是对海洋水色要素(如叶绿素、悬浮沙和可溶性的**物质等)和水温及其动态变化的探测,有效载荷通常选用灵敏度高、信噪比高、光谱解析度高、波段多、频宽窄的海洋水色扫瞄器。要求空间解析度在250~1000m,地面覆盖周期要求2~3天。 中国首颗海洋卫星 发展海洋水色系列卫星的目的是:掌握我国近海海洋初级生产力分布、海洋渔业及养殖业资源状况和环境质量,了解我国重点河口港湾的悬浮泥沙分布规律,监测我国近海海面溢油油漠、赤潮富营养、电场循环水排海热污染、海冰冰情、浅海地形等。 动力环境 海洋动力环境卫星是对海面风场、海面高度、浪场、流场以及温度场等协动力环境要素探测的卫星,有效载荷通常是微波散射计、微波辐射计、雷达高度计等,并具有多种模式和多种解析度。 海洋卫星拍摄的 发展海洋动力环境系列卫星的主要目的是:利用微波散射计监控全球海洋表面风场,得到全球海洋上的风矢量场和表面风应力数据,利用雷达高度计提供全球海洋地形数据,得到全球高解析度的大洋环流、海洋大地水准面、重力场和极地冰盖的变异。 海洋动力环境卫星所获取的海面动力和海底拓扑资料,具有明显的军事价值,美国把这类卫星资料置于五角大楼控制下,尤其是实时高精度资料控制严格,绝不向别国提供。 环境综合 海洋环境综合卫星是对全球与近海(包括海岸带)的海洋动态环境和水色环境各种信息的综合遥感监测,有效载荷包括可见光、红外,主动、被动遥感器,如多光谱成像仪、合成孔径雷达、微波散射计、辐射计、高度计等。 &amp 为实施海洋开发战略,落实《全国海洋经济发展规划纲要》,实现建设海洋强国的宏伟目标,海洋卫星及卫星海洋套用须尽快实现从“试验型”向“业务服务型”的转变,建立健全天地协调,布局合理、功能完善、产品丰富、信息共享、服务高效的长期、连续、稳定运行的海洋卫星遥感套用体系。提升海洋遥感套用基础和技术能力,达到产品多样化、数据标准化、套用定量化、运行业务化,逐步满足海洋监测监视现代化、科学化、信息化、全球化的要求。通过努力,力争在“十一五”计画期间实现以下目标: (1)继续推进3个系列的海洋卫星的发展,力争实现发射海洋水色系列卫星3颗、海洋动力环境系列卫星2颗和海洋监视监测系列卫星1颗的发展目标。 海洋卫星 (2)在海洋卫星地面套用系统方面,努力实现新建亚布力海洋卫星地面站、北京海洋卫星地面站、数据中心,扩建三亚海洋卫星地面接收站,力争实现南、北极国家级的卫星回放数据接收站建设和海上遥感卫星辐射校正与真实性检验场的建设。 (3)在卫星海洋套用方面,结合套用技术成熟程度和海洋卫星的发展计画,有计画地开展HY-1卫星在海洋资源调查、海洋生态灾害预警、海洋环境污染监测、海温海冰预报等套用;有计画地开展HY-2卫星在海洋环境预报、海洋全球变化等方面的套用;有计画地开展HY-3卫星的信息处理平台、海洋监视和海洋动力现象的套用,推广和普及卫星海洋套用工作,为实现我国国民经济的发展战略目标,维护国防安全,全面实现小康社会提供有效服务和可行支撑。 发展海洋环境综合卫星主要目标是:提供全天时、全天候海况实时资料,用于改进海况数值预报模式,提高中、长期海况预报准确率。同时提供海上目标、海岸带调查、海洋污染的实时同步海洋要素,为海洋环境监测、维护海洋权益和海岸带资源调查、综合利用与管理服务。 发展情况 海洋一号A(HY-1A)卫星于2002年5月15日在太原卫星发射中心成功发射,至今已稳定运行一年多,卫星数据已逐步套用,这是中国航天事业和海洋事业的一项重大成就。海洋一号A卫星的成功发射、稳定运行和广泛套用,是在国防科工委、国家发展和改革委员会、财政部、总装备部、中国航天科技集团公司等部门的大力支持下,各有关单位共同努力和通力协作的结果,是广大科技人员辛勤劳动的成果,具有十分重大的意义,它结束了中国没有海洋卫星的历史,进一步充实了中国航天对地观测体系;海洋一号A卫星在轨稳定运行,实现了中国第一颗海洋观测试验型业务卫星的预定目标,使我国有能力对所管辖的近300万km2海域的水色环境实施大面积、实时和动态监测,并具备对世界各大洋和南北极区的探测能力;海洋一号A卫星的成功运行,也使中国海洋立体监测体系进一步完善,海洋监测能力得到增强。海洋一号A卫星数据已逐步在海洋资源开发与管理、海洋环境监测与保护、海洋灾害监测与预报、海洋科学研究、海洋领域的国际与地区合作、南北极科学考察等领域发挥作用,卫星套用取得了初步成果。 为总结和展现海洋卫星及套用工作的进展和成果,人们编制了《中国海洋卫星套用报告》,希望借此使有关部门、社会各界和广大公众认识和了解我国的海洋卫星,推动中国海洋事业和航天事业的进一步发展,为实现十六大提出的“全面建设小康社会”的伟大目标作出更大贡献。 “海洋二号”卫星,是中国第一颗海洋动力环境卫星,采用的是微波遥感技术,可全天时、全天候对海面风场、海流、海浪和温度等海洋要素进行监测,直接为海洋减灾防灾、海上交通运输、海洋工程和海洋科学研究等工作提供技术支持。“海洋二号”卫星的成功发射,标志著中国海洋卫星向着系列化、业务化方向迈出一大步,为中国海洋观测开辟了一个崭新领域,将极大提升中国海洋监管、海权维护和海洋科研能力随着“海洋二号”卫星的顺利升空,至今中国已成功发射3颗海洋卫星。 2012年9月5日,国家海洋局数字海洋科学技术重点实验室揭牌仪式暨第三届中国数字海洋论坛津召开。国家卫星海洋套用中心主任蒋兴伟透露,按照规划,2020年前我国将发射8颗海洋系列卫星,包括4颗海洋水色卫星、2颗海洋动力环境卫星和2颗海陆雷达卫星,加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测。该规划由国土资源部牵头。截至目前,我国已发射3颗海洋卫星,其中2颗 “海洋一号”系列卫星(即水色卫星),1颗“海洋二号”系列卫星(即海洋动力卫星)。“目前已实现了对包括黄岩岛在内的远海海域的环境观测。”蒋兴伟说,海陆雷达卫星系列建立后,将能实现对海上目标的监视,满足在恶劣海况下对海上溢油等灾害应急、海洋权益维护保障、海域和海岛监管等监测和监视的需求。 国家海洋局曾经透露,在对我国近岸海域实现业务化定期监测后,我国海域动态监管实现又一重大进步,逐渐实现从近海到远海的覆盖,黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的卫星遥感影像,被纳入国家海域动态监视监测管理系统。 监视卫星 海洋监视卫星是用于探测、识别、跟踪、定位和监视全球海面舰艇和水下潜艇活动的卫星,它能提供舰船之间、舰岸之间的通信,是20世纪70年代发展起来的十分先进的卫星技术。由于它所覆盖的海域广阔,探测目标多而且是活动的,所以它的轨道较高,并且多采用多星组网体制,以保证连续监视。海洋监视卫星分为电子型和雷达型两类,它是军事预警和侦察卫星发展的一个重要分支。海洋监视卫星问世以来,广泛用于发现和跟踪海上军用舰船,探测海洋各种特性。海浪的高度、海流强度和方向、海面风速、海水温度和含盐量等等数据,都是极为宝贵的军事情报。苏联和美国都先后发射了这种卫星。美国的“海洋1号”卫星能利用其侧视雷达全天候地监视海上小型船只,它还能探测出高度不过10厘米的海浪。它是用于监视海上舰只潜艇活动、侦察舰艇雷达信号和无线电通信的侦察卫星。世界上第一颗海洋监视卫星是苏联于1967年12月27日发射的“宇宙”198号卫星,这是一颗试验卫星。苏联的海洋监视卫星自1973年后进入实用阶段。 海洋卫星拍摄 大事记 1985年,我国第一颗海洋卫星开始立项准备。自此,我国海洋卫星工作开始进入基础调研和技术准备阶段。 1993年,国家海洋局启动海洋卫星研制立项论证工作。 1996年5月,成立“国家海洋局海洋卫星工作领导小组”和“海洋卫星总体部”。 1997年1月31日,海洋卫星总体部完成了海洋水色卫星的综合论证报告和立项的准备工作,并通过专家评审。 1997年6月30日,国防科工委正式下达“关于海洋水色卫星立项研制的批覆”,同意海洋水色卫星立项研制。这颗卫星被命名为“海洋一号A”卫星。 1998年3月,成立“国家海洋局卫星海洋套用中心”,负责海洋卫星的地面套用系统建设和地面套用研究工作。 1999年5月,“海洋一号”卫星地面套用系统建设工程得到国家计委的立项批覆。 2000年9月,中央机构编制委员会办公室正式批覆成立了“国家卫星海洋套用中心”,负责建立“海洋一号”卫星地面套用系统。 2000年11月,国家卫星海洋套用中心与航天科技集团五院正式签订了研制契约。 2002年3月,完成正样发射星研制。 2002年5月15日9时50分,中国第一颗海洋卫星(“海洋一号A”)在太原卫星发射中心由长征火箭发射升空,结束了中国没有海洋卫星的历史。 2002年5月27日,“海洋一号A”卫星定轨在预定高度798公里的准太阳同步轨道上。 2002年5月29日,北京、三亚地面接收站成功获得第一轨海洋水色遥感图像,并验证了卫星及地面套用系统的各项功能。 2002年9月2日,完成“海洋一号A”卫星在轨测试评审,卫星试验任务圆满完成。 2002年9月18日,举行了“海洋一号A”卫星的交接仪式和“海洋一号B”卫星研制协定的签字仪式。海洋卫星进入了业务化套用阶段和海洋卫星事业的正常发展时期。 2002年12月12日,“海洋一号A”卫星数据正式对外分发。 2005年1月,国防科工委、财政部批覆了“海洋一号B”卫星工程研制立项。同年7月,国防科工委正式批覆了“海洋一号B”卫星研制总要求。 2007年3月,“海洋一号B”卫星暨长征二号丙运载火箭出厂,并由专列运达太原卫星发射场完成吊装。 2007年4月10日,完成发射前各项准备工作。 2007年4月11日11时27分,装备更为精良的“海洋一号B”卫星,由长征二号丙运载火箭在太原卫星发射中心成功发射升空。 2011年8月16日6时57分,中国在太原卫星发射中心用“长征四号乙”运载火箭,将中国第一颗海洋动力环境监测卫星“海洋二号”成功送入太空。

以上就是关于数据与功能服务全部的内容,包括:数据与功能服务、海洋卫星详细资料大全、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/web/9699177.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存