DES是一种对称加密算法,所谓对称加密算法即:加密和解密使用相同密钥的算法。DES加密算法出自IBM的研究,
后来被美国政府正式采用,之后开始广泛流传,但是近些年使用越来越少,因为DES使用56位密钥,以现代计算能力,
24小时内即可被破解
调用过程
最近做微信小程序获取用户绑定的手机号信息解密,试了很多方法。最终虽然没有完全解决,但是也达到我的极限了。有时会报错:javaxcryptoBadPaddingException: pad block corrupted。
出现错误的详细描述
每次刚进入小程序登陆获取手机号时,会出现第一次解密失败,再试一次就成功的问题。如果连续登出,登入,就不会再出现揭秘失败的问题。但是如果停止 *** 作过一会,登出后登入,又会出现第一次揭秘失败,再试一次就成功的问题。
网上说的,官方文档上注意点我都排除了。获取的加密密文是在前端调取wxlogin()方法后,调用我后端的微信授权接口,获取用户的sessionkey,openId然后才是前端调用的获取sessionkey加密的用户手机号接口,所以我可以保证每次sessionkey是最新的。不会过期。
并且我通过日志发现在sessionkey不变的情况下,第一次失败,第二次解密成功。
加密算法,RSA是绕不开的话题,因为RSA算法是目前最流行的公开密钥算法,既能用于加密,也能用户数字签名。不仅在加密货币领域使用,在传统互联网领域的应用也很广泛。从被提出到现在20多年,经历了各种考验,被普遍认为是目前最优秀的公钥方案之一
非对称加密算法的特点就是加密秘钥和解密秘钥不同,秘钥分为公钥和私钥,用私钥加密的明文,只能用公钥解密;用公钥加密的明文,只能用私钥解密。
一、 什么是“素数”?
素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积
二、什么是“互质数”(或“互素数”)?
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。
三、什么是模指数运算?
指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
模指数运算就是先做指数运算,取其结果再做模运算。如(5^3) mod 7 = (125 mod 7) = 6。
其中,符号^表示数学上的指数运算;mod表示模运算,即相除取余数。具体算法步骤如下:
(1)选择一对不同的、足够大的素数p,q。
(2)计算n=p q。
(3)计算f(n)=(p-1) (q-1),同时对p, q严加保密,不让任何人知道。
(4)找一个与f(n)互质的数e作为公钥指数,且1<e<f(n)。
(5)计算私钥指数d,使得d满足(de) mod f(n) = 1
(6)公钥KU=(e,n),私钥KR=(d,n)。
(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:C=M^e mod n。
(8)解密过程为:M=C^d mod n。
在RSA密码应用中,公钥KU是被公开的,即e和n的数值可以被第三方窃听者得到。破解RSA密码的问题就是从已知的e和n的数值(n等于pq),想法求出d的数值,这样就可以得到私钥来破解密文。从上文中的公式:(d e) mod ((p-1) (q-1)) = 1,我们可以看出,密码破解的实质问题是:从p q的数值,去求出(p-1)和(q-1)。换句话说,只要求出p和q的值,我们就能求出d的值而得到私钥。
当p和q是一个大素数的时候,从它们的积p q去分解因子p和q,这是一个公认的数学难题。比如当pq大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。
缺点1:虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。
在android 开发的很多时候。为了保证用户的账户的安全性,再保存用户的密码时,通常会采用MD5加密算法,这种算法是不可逆的,具有一定的安全性
MD5不是加密算法, 因为如果目的是加密,必须满足的一个条件是加密过后可以解密。但是MD5是无法从结果还原出原始数据的。
MD5只是一种哈希算法
首先不要管安卓端还是苹果端,现在一般都是响应式的app,你放到安卓或者苹果或者pc或者平板都是没有问题的。一般采用的是>
去session的官网下载一个java的版本 我记得是session是基于servlet的 只要在webxml里面配置几个,就可以调用java自己定义的接口了。也可以和spring一起使用。具体怎么用 可以搜索:session+spring
是一个简单的xml存储,我想基本满足你的要求了。你说的session不好解释,你想cookie不就是存在本机上的文本么,可用于登陆。这点是不是跟share pref差不多么?
我考虑了一下,sqlite其实未尝不可,都差不多,只是实现方式不同而已。
我也是菜鸟,哈哈,见笑啦。
经过上一篇的概览,我们对Android图形系统渲染流程有了一个大致的了解,这篇开始做细节分析。那么先来总结下app与SurfaceFlinger服务连接过程。
经过前面的activity 、window 、view 的分析我们大致了解了Activity的显示过程。其实Surface的创建过程与Activity的显示过程密不可分。
那么就从ActivitymakeVisible 开始捋下流程:
1 ActivitymakeVisible getWindowManager() 并执行addView。
2 经过WindowManagerImpl 和 WindowManagerGlobal addView , 最终创建了ViewRootImpl
3 ViewRootImpl 内部会new Surface() ,它是一个Parcelable对象,可在进程间传递,但目前仅是一个空壳,还未被赋值。
同时,通过WindowManagerGlobalgetWindowSession()获取了Session实例,准备好了与WMS通信,并且Session内有个成员变量SurfaceSession值得关注,它的初始化是在Session的windowAddedLocked方法,先埋个伏笔。
4 根据流程我们知道,最终ViewRootImpl会在走setView, 在这个方法中开始了两个流程:
requestLayout执行会走消息,因此它虽然在addToDisplay前面,但是执行是在之后的,因此我们先来看看mWindowSessionaddToDisplay,这个过程最终是在WMS执行addWindow方法:
我们之前埋过伏笔的,windowAddedLocked创建了SurfaceSession 对象,并将当前 Session 添加到 WMSmSessions 成员变量。SurfaceSession 的创建会调用 JNI,在 JNI 调用 nativeCreate()。
从这里开始要细说下了,这是应用程序与SurfaceFlinger建立连接的关键点:
跟踪到android_view_SurfaceSessioncpp 的nativeCreate()方法,创建了SurfaceComposerClient 对象,并且将这个对象赋值给类型为sp<SurfaceComposerClient>的智能指针mSession时,就会导致SurfaceComposerClient类的成员函数onFirstRef被调用:
SurfaceComposerClient类的成员函数getComposerService用来获得SurfaceFlinger服务的一个代理接口
ComposerService类是单例模式,当我们第一次调用它的静态函数getInstance的时候,它就会在构造函数中获得SurfaceFlinger服务的一个代理接口,并且保存在它的成员变量mComposerService中,同时会通过这个代理接口的成员函数getCblk来获得一块匿名共享内存mServerCblkMemory。这块匿名共享内存是由SurfaceFlinger服务创建的,用来描述系统显示屏的信息,例如,显示屏的个数、大小、方向、密度等等信息。
这时候sm有值了,在接着onFirstRef()往下执行:
是不是感觉特别绕,下面来简单总结下:
首先ComPoserService作为client 与 SurfaceFlinger server进行binder IPC , 获取到SurfaceFlinger创建的Client对象,它相当于是SurfaceFlinger内部对应用程序客户端的封装对象,而Client与SurfaceComposerClient又互为binder ipc的两端,SurfaceComposerClient为client端,Client为server端。
这样,应用进程成功通过SurfaceComposerClient与SurfaceFlinger建立了连接。
下篇分析app请求SurfaceFlinger创建Surface过程。
参考:
>
你可以采用传参数,将登陆后的sessionid放到session中 请问你是用struts2做的么如果是你可以参考这个代码<action name="login" class="loginAction"> <result type="redirectAction"> <param name="actionName">Home</param> <param name="ower">${#sessionusersessionId}</param> </result> <result name="input">/loginjsp</result> </action> jsp传参数 利用sessionsetAttribute("attributeName",attribute)或者requestsetAttribute("attributeName",attribute) 示例:User user=new User("shilei"); sessionsetAttribute("userName",user);
给你详细讲一下。比如系统有个登陆页面(loginjsp):name:_________password:____________(登陆按钮)你按下登陆按钮,就根据name和password去数据库里面查,如果判断有此用户并且密码正确,就设置一个session的键对应的值,键名字自己取,统一即可,比如"userInfo",代码就是servlet的doPost里面>
以上就是关于安卓常见的一些加密((对称加密DES,AES),非对称加密(RSA),MD5)全部的内容,包括:安卓常见的一些加密((对称加密DES,AES),非对称加密(RSA),MD5)、如何通过手机app获取服务器数据库数据、android客户端怎么将数据通过session方法传输到以java为后台的服务器,在服务器用什么方法接受等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)