英语可以称为spider或者web crawler,是一种用来自动浏览万维网的网络机器人。
简单说:
通过编写程序,模拟浏览器上网,然后去互联网上抓取数据资源的过程。
互联网包含着各种海量的信息。出于数据分析或产品需求,我们需要从某些网站,提取出我们感兴趣、有价值的内容,我们需要一种能自动获取网页内容并可以按照指定规则提取相应内容的程序,这就是爬虫。
爬虫访问网站的过程会消耗目标系统资源。不少网络系统并不默许爬虫工作。因此在访问大量页面时,爬虫需要考虑到规划、负载,还需要讲“礼貌”。 不愿意被爬虫访问、被爬虫主人知晓的公开站点可以使用robotstxt文件之类的方法避免访问。
基于>
基于API接口的数据采集:许多网站提供API接口来提供数据访问服务,网络爬虫可以通过调用API接口获取数据。与直接采集Web页面相比,通过API接口获取数据更为高效和稳定。
基于无头浏览器的数据采集:无头浏览器是一种无界面的浏览器,它可以模拟用户在浏览器中的行为,包括页面加载、点击事件等。网络爬虫可以使用无头浏览器来模拟用户在Web页面中的 *** 作,以获取数据。
基于文本分析的数据采集:有些数据存在于文本中,网络爬虫可以使用自然语言处理技术来分析文本数据,提取出需要的信息。例如,网络爬虫可以使用文本分类、实体识别等技术来分析新闻文章,提取出其中的关键信息。
基于机器学习的数据采集:对于一些复杂的数据采集任务,网络爬虫可以使用机器学习技术来构建模型,自动识别和采集目标数据。例如,可以使用机器学习模型来识别中的物体或文字,或者使用自然语言处理模型来提取文本信息。
总之,网络爬虫的数据采集方法多种多样,不同的采集任务需要选择不同的方法来实现。
1 爬虫技术研究综述 引言 随着网络的迅速发展,万维网成为大量信息的载体,如何有效地提取并利用这些信息成为一个巨大的挑战。搜索引擎(Search Engine),例如传统的通用搜索引擎AltaVista,Yahoo!和Google等,作为一个辅助人们检索信息的工具成为用户访问万维网的入口和指南。但是,这些通用性搜索引擎也存在着一定的局限性,如: (1) 不同领域、不同背景的用户往往具有不同的检索目的和需求,通用搜索引擎所返回的结果包含大量用户不关心的网页。 (2) 通用搜索引擎的目标是尽可能大的网络覆盖率,有限的搜索引擎服务器资源与无限的网络数据资源之间的矛盾将进一步加深。 (3) 万维网数据形式的丰富和网络技术的不断发展,、数据库、音频/视频多媒体等不同数据大量出现,通用搜索引擎往往对这些信息含量密集且具有一定结构的数据无能为力,不能很好地发现和获取。 (4) 通用搜索引擎大多提供基于关键字的检索,难以支持根据语义信息提出的查询。 为了解决上述问题,定向抓取相关网页资源的聚焦爬虫应运而生。聚焦爬虫是一个自动下载网页的程序,它根据既定的抓取目标,有选择的访问万维网上的网页与相关的链接,获取所需要的信息。与通用爬虫(generalpurpose web crawler)不同,聚焦爬虫并不追求大的覆盖,而将目标定为抓取与某一特定主题内容相关的网页,为面向主题的用户查询准备数据资源。 1 聚焦爬虫工作原理及关键技术概述 网络爬虫是一个自动提取网页的程序,它为搜索引擎从万维网上下载网页,是搜索引擎的重要组成。传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件,如图1(a)流程图所示。聚焦爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止,如图1(b)所示。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索;对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。 相对于通用网络爬虫,聚焦爬虫还需要解决三个主要问题: (1) 对抓取目标的描述或定义; (2) 对网页%B
网络爬虫又称网络蜘蛛、网络机器人,它是一种按照一定的规则自动浏览、检索网页信息的程序或者脚本。网络爬虫能够自动请求网页,并将所需要的数据抓取下来。通过对抓取的数据进行处理,从而提取出有价值的信息。
我们所熟悉的一系列搜索引擎都是大型的网络爬虫,比如百度、搜狗、360浏览器、谷歌搜索等等。每个搜索引擎都拥有自己的爬虫程序,比如360浏览器的爬虫称作360Spider,搜狗的爬虫叫做Sogouspider。
百度搜索引擎,其实可以更形象地称之为百度蜘蛛(Baiduspider),它每天会在海量的互联网信息中爬取优质的信息,并进行收录。当用户通过百度检索关键词时,百度首先会对用户输入的关键词进行分析,然后从收录的网页中找出相关的网页,并按照排名规则对网页进行排序,最后将排序后的结果呈现给用户。在这个过程中百度蜘蛛起到了非常想关键的作用。
百度的工程师们为“百度蜘蛛”编写了相应的爬虫算法,通过应用这些算法使得“百度蜘蛛”可以实现相应搜索策略,比如筛除重复网页、筛选优质网页等等。应用不同的算法,爬虫的运行效率,以及爬取结果都会有所差异。
爬虫可分为三大类:通用网络爬虫、聚焦网络爬虫、增量式网络爬虫。
通用网络爬虫:是搜索引擎的重要组成部分,上面已经进行了介绍,这里就不再赘述。通用网络爬虫需要遵守robots协议,网站通过此协议告诉搜索引擎哪些页面可以抓取,哪些页面不允许抓取。
robots协议:是一种“约定俗称”的协议,并不具备法律效力,它体现了互联网人的“契约精神”。行业从业者会自觉遵守该协议,因此它又被称为“君子协议”。
聚焦网络爬虫:是面向特定需求的一种网络爬虫程序。它与通用爬虫的区别在于,聚焦爬虫在实施网页抓取的时候会对网页内容进行筛选和处理,尽量保证只抓取与需求相关的网页信息。聚焦网络爬虫极大地节省了硬件和网络资源,由于保存的页面数量少所以更新速度很快,这也很好地满足一些特定人群对特定领域信息的需求。
增量式网络爬虫:是指对已下载网页采取增量式更新,它是一种只爬取新产生的或者已经发生变化网页的爬虫程序,能够在一定程度上保证所爬取的页面是最新的页面。
随着网络的迅速发展,万维网成为大量信息的载体,如何有效地提取并利用这些信息成为一个巨大的挑战,因此爬虫应运而生,它不仅能够被使用在搜索引擎领域,而且在大数据分析,以及商业领域都得到了大规模的应用。
1)数据分析
在数据分析领域,网络爬虫通常是搜集海量数据的必备工具。对于数据分析师而言,要进行数据分析,首先要有数据源,而学习爬虫,就可以获取更多的数据源。在采集过程中,数据分析师可以按照自己目的去采集更有价值的数据,而过滤掉那些无效的数据。
2)商业领域
对于企业而言,及时地获取市场动态、产品信息至关重要。企业可以通过第三方平台购买数据,比如贵阳大数据交易所、数据堂等,当然如果贵公司有一个爬虫工程师的话,就可通过爬虫的方式取得想要的信息。
爬虫是一把双刃剑,它给我们带来便利的同时,也给网络安全带来了隐患。有些不法分子利用爬虫在网络上非法搜集网民信息,或者利用爬虫恶意攻击他人网站,从而导致网站瘫痪的严重后果。关于爬虫的如何合法使用,推荐阅读《中华人民共和国网络安全法》。
为了限制爬虫带来的危险,大多数网站都有良好的反爬措施,并通过robotstxt协议做了进一步说明,下面是淘宝网robotstxt的内容:
从协议内容可以看出,淘宝网对不能被抓取的页面做了规定。因此大家在使用爬虫的时候,要自觉遵守robots协议,不要非法获取他人信息,或者做一些危害他人网站的事情。
首先您应该明确,不止Python这一种语言可以做爬虫,诸如PHP、Java、C/C++都可以用来写爬虫程序,但是相比较而言Python做爬虫是最简单的。下面对它们的优劣势做简单对比:
PHP:对多线程、异步支持不是很好,并发处理能力较弱;Java也经常用来写爬虫程序,但是Java语言本身很笨重,代码量很大,因此它对于初学者而言,入门的门槛较高;C/C++运行效率虽然很高,但是学习和开发成本高。写一个小型的爬虫程序就可能花费很长的时间。
而Python语言,其语法优美、代码简洁、开发效率高、支持多个爬虫模块,比如urllib、requests、Bs4等。Python的请求模块和解析模块丰富成熟,并且还提供了强大的Scrapy框架,让编写爬虫程序变得更为简单。因此使用Python编写爬虫程序是个非常不错的选择。
爬虫程序与其他程序不同,它的的思维逻辑一般都是相似的,所以无需我们在逻辑方面花费大量的时间。下面对Python编写爬虫程序的流程做简单地说明:
先由urllib模块的request方法打开URL得到网页HTML对象。
使用浏览器打开网页源代码分析网页结构以及元素节点。
通过BeautifulSoup或则正则表达式提取数据。
存储数据到本地磁盘或数据库。
当然也不局限于上述一种流程。编写爬虫程序,需要您具备较好的Python编程功底,这样在编写的过程中您才会得心应手。爬虫程序需要尽量伪装成人访问网站的样子,而非机器访问,否则就会被网站的反爬策略限制,甚至直接封杀IP,相关知识会在后续内容介绍。
开课吧广场-人才学习交流平台
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1学习 Python 包并实现基本的爬虫过程
2了解非结构化数据的存储
3学习scrapy,搭建工程化爬虫
4学习数据库知识,应对大规模数据存储与提取
5掌握各种技巧,应对特殊网站的反爬措施
6分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事百科、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,的链接等等。你也可以利用PyMongo,更方便地在Python中 *** 作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
以上就是我的回答,希望对你有所帮助,望采纳。
一般抓数据的话可以学习Python,但是这个需要代码的知识。
如果是没有代码知识的小白可以试试用成熟的采集器。
目前市面比较成熟的有八爪鱼,后羿等等,但是我个人习惯八爪鱼的界面,用起来也好上手,主要是他家的教程容易看懂。可以试试。
以上就是关于Python网络爬虫系列1-全部的内容,包括:Python网络爬虫系列1-、网络爬虫的数据采集方法有哪些、网络爬虫等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)