A graph which is connected and acyclic can be consIDered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
input Specification:Each input file contains one test case. For each case,the first line contains a positive integer N (≤) which is the number of nodes,and hence the nodes are numbered from 1 to N. Then N−@H_419_31@1 lines follow,each describes an edge by given the two adjacent nodes‘ numbers.
Output Specification:For each test case,print each of the deepest roots in a line. If such a root is not unique,print them in increasing order of their numbers. In case that the given graph is not a tree,print Error: K components
where K
is the number of connected components in the graph.
51 21 31 42 5Sample Output 1:
345Sample input 2:
51 31 42 53 4Sample Output 2:
Error: 2 components
1 #include <iostream> 2 #include <vector> 3 #include<set> 4 using namespace std; 5 vector<vector<int>>G; 6 int N,maxH = 0; 7 bool visit[10010]; 8 set<int>res; 9 vector<int>temp;10 11 voID DFS(int node,int H)12 {13 if (H > maxH)14 {15 temp.clear();16 temp.push_back(node);//更新新的根节点17 maxH = H;18 }19 else if (H == maxH)20 temp.push_back(node);//相同的最优解21 visit[node] = true;22 for (int i = 0; i < G[node].size(); ++i)23 if (visit[G[node][i]] == false)24 DFS(G[node][i],H + 1);25 }26 27 int main()28 {29 int a,b,s1 = 0,cnt = 0;30 cin >> N;31 G.resize(N+1);32 for (int i = 1; i < N; ++i)33 {34 cin >> a >> b;35 G[a].push_back(b);36 G[b].push_back(a);37 }38 for (int i = 1; i <= N; ++i)39 {40 if (visit[i] == false)//开始深度搜索遍历,如果是一个联通区域,则只会执行一次41 {42 DFS(i,1);43 if (i == 1)44 {45 if (temp.size() != 0)46 s1 = temp[0];47 for (int j = 0; j < temp.size(); ++j)48 res.insert(temp[j]);49 }50 cnt++;//计算集合数51 } 52 }53 if (cnt != 1)54 printf("Error: %d components\n",cnt);55 else56 {57 temp.clear();58 maxH = 0;59 fill(visit,visit + N + 1,false);60 DFS(s1,1);61 for (int j = 0; j < temp.size(); ++j)62 res.insert(temp[j]);63 for (auto r : res)64 cout << r << endl;65 }66 return 0;67 }总结
以上是内存溢出为你收集整理的PAT甲级——A1021 Deepest Root全部内容,希望文章能够帮你解决PAT甲级——A1021 Deepest Root所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)