The treats are interesting for many reasons: The treats are numbered 1..N and stored sequentially in single file in a long Box that is open at both ends. On any day,FJ can retrIEve one treat from either end of his stash of treats. like fine wines and delicIoUs cheeses,the treats improve with age and command greater prices. The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their Box,what is the greatest value FJ can receive for them if he orders their sale optimally?
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
input
line 1: A single integer,Nlines 2..N+1: line i+1 contains the value of treat v(i)
Output
line 1: The maximum revenue FJ can achIEve by selling the treatsSample input
513152
Sample Output
43
Hint
Explanation of the sample:Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1,3,1,5,2) in the following order of indices: 1,2,4,making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43. 题意:每次可以从两端取一个数,假设取得数是 x ,这是第 i 次取,那么可获得价值 i * x,问最后最大价值是多少。 。。。设 dp[i][j] 表示在左边去 i 个,右边取 j 个获得的最大价值,那么有状态转移方程: dp[i][j] = max(dp[i - 1][j] + val[i] * (i + j),dp[i][j - 1] + val[n - j + 1] * (i + j)) 并设初始状态 dp[i][0] (i 从 1 到 n),dp[0][j] (j 从 1 到 n)
#include<cstdio>#include<iostream>#include<algorithm>#define deBUG(x) cout << "[" << #x <<": " << (x) <<"]"<< endl#define pii pair<int,int>#define clr(a,b) memset((a),b,sizeof(a))#define rep(i,a,b) for(int i = a;i < b;i ++)#define pb push_back#define MP make_pair#define LL long long#define ull unsigned LL#define ls i << 1#define rs (i << 1) + 1#define INT(t) int t; scanf("%d",&t)using namespace std;const int maxn = 2e3 + 10;int dp[maxn][maxn];int a[maxn];int main() { int n; while(~scanf("%d",&n)){ for(int i = 1;i <= n;++ i) scanf("%d",&a[i]); dp[1][0] = a[1]; dp[0][1] = a[n]; rep(i,2,n + 1) dp[i][0] = dp[i - 1][0] + a[i] * i; rep(i,n + 1) dp[0][i] = dp[0][i - 1] + a[n - i + 1] * i; for(int i = 1;i <= n;++ i) for(int j = 1;j <= n;++ j) dp[i][j] = max(dp[i - 1][j] + a[i] * (i + j),dp[i][j - 1] + a[n - j + 1] * (i + j)); int ans = 0; for(int i = 0;i <= n;++ i) ans = max(ans,dp[i][n - i]); cout << ans << endl; } return 0;}总结
以上是内存溢出为你收集整理的POJ - 3186 Treats for the Cows(dp)全部内容,希望文章能够帮你解决POJ - 3186 Treats for the Cows(dp)所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)