矩阵正交的定义

矩阵正交的定义,第1张

矩阵相互正交是两个向量正交,两个向量正交是指它们的内积等于零,两个向量的内积是它们对应分量的乘积之和。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。 扩展资料

在三维向量空间中, 两个向量的内积如果是零, 那么就说这两个向量是正交的。正交最早出现于三维空间中的`向量分析。 换句话说, 两个向量正交意味着它们是相互垂直的。若向量α与β正交,则记为α⊥β。

1、方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2、方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4、A的列向量组也是正交单位向量组;

5、正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵A称为正交矩阵, 若A为单位正交阵,则满足以下条件:
1) AT是正交矩阵
2)
(E为单位矩阵)
3) A的各行是单位向量且两两正交
4) A的各列是单位向量且两两正交
5) (Ax,Ay)=(x,y) x,y∈R
6) |A| = 1或-1
矩阵正交化 就是存在与A行列数相同的可逆矩阵p 使得p‘Ap=E

|A-λE| =
1-λ -2 2
-2 -2-λ 4
2 4 -2-λ
=c2+c3
1-λ 0 2
-2 2-λ 4
2 2-λ -2-λ
=r3-r2
1-λ 0 2
-2 2-λ 4
4 0 -6-λ
=(2-λ)
1-λ 2
4 -6-λ
= -(λ + 7)(λ - 2)^2
A的特征值为 -7,2,2
(A+7E)X=0 的基础解系为:a1=(1,2,-2)'
(A-2E)X=0 的基础解系为:a2=(2,-1,0)',a3=(2,4,5)' -- 已正交
单位化:
b1=(1/3,2/3,-2/3)'
b2=(2/√3,-1'√3,0)'
b3=(2/√45,4/√45,5/√45)'
令Q=(b1,b2,b3),则Q为正交矩阵,使Q^-1AQ=diag(-7,2,2)

问题一:怎样求一个矩阵的正交矩阵 X是一个矩阵,正交投影。可以理解为把一个向量投影到X的列向量空间中。
对应的投影矩阵为:X(X'X)^(-1)X',负一次方表示矩阵求逆。

问题二:以某一个特定的向量,做某个正交矩阵的行向量或列向量,怎么求这个正交矩阵啊 如果x是一个单位列向量(即x^Tx=1),要找一个以x为第1列的正交阵,可以这样
比较笨的办法,可以找一组线性无关的向量x,y1,,y(n-1),然后做Gram-Schmidt正交化
快一点的办法,令w=x-e1(e1表示单位阵的第1列),不妨假定w≠0,那么Q=I-2ww^T/(w^Tw)满足要求

问题三:宇宙的尽头是什么 宇宙是有边界的,在宇宙中存在各种各样的物质。宇宙在向外扩散。在大爆炸的时候产生了时间和空间。在宇宙的外面不存在物质,既没有空间,也没有时间。

问题四:怎么求正交矩阵T,使T的负一次方AT为对角矩阵 再解出特征向量
下面对该矩阵列向量进行施密特正交化
得到此正交矩阵T
并可以使得
T^-1AT=diag(-3,-3,6)

如果AAᵀ=E(E为单位矩阵,Aᵀ表示“矩阵A的转置矩阵”)或AᵀA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。

正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看作是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。

扩展资料

矩阵为高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。

将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

参考资料来源:百度百科-矩阵

参考资料来源:百度百科-正交矩阵

定义
1
n阶实矩阵
a称为正交矩阵,如果:a×a′=e(e为单位矩阵,a'表示“矩阵a的转置矩阵”。)
若a为正交阵,则下列诸条件是等价的:
1)
a
是正交矩阵
2)
a×a′=e(e为单位矩阵)
3)
a′是正交矩阵
4)
a的各行是单位向量且两两正交
5)
a的各列是单位向量且两两正交
6)
(ax,ay)=(x,y)
x,y∈r

正交矩阵通常用字母q表示。
举例:a=[r11
r12
r13;r21
r22
r23;r31
r32
r33]
则有:r11^2+r12^2+r13^2=r21^2+r22^2+r23^2=r31^2+r32^2+r33^2=1
r11r12+r21r22+r31r32=0等性质
正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10223492.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存