You are given a rooted tree consisting of n vertices numbered from 1 to n. The root of the tree is a vertex number 1.
Initially all vertices contain number 0. Then come q querIEs,each query has one of the two types:
The format of the query: 1 v x k. In response to the query,you need to add to the number at vertex v number x; to the numbers at the descendants of vertex v at distance 1,add x - k; and so on,to the numbers written in the descendants of vertex v at distance i,you need to add x - (i·k). The distance between two vertices is the number of edges in the shortest path between these vertices. The format of the query: 2 v. In reply to the query you should print the number written in vertex v modulo 1000000007 (109 + 7).Process the querIEs given in the input.
inputThe first line contains integer n (1 ≤ n ≤ 3·105) — the number of vertices in the tree. The second line contains n - 1 integers p2, p3, ... pn(1 ≤ pi < i),where pi is the number of the vertex that is the parent of vertex i in the tree.
The third line contains integer q (1 ≤ q ≤ 3·105) — the number of querIEs. Next q lines contain the querIEs,one per line. The first number in the line is type. It represents the type of the query. If type = 1,then next follow space-separated integers v, x, k (1 ≤ v ≤ n; 0 ≤ x < 109 + 7; 0 ≤ k < 109 + 7). If type = 2,then next follows integer v (1 ≤ v ≤ n) — the vertex where you need to find the value of the number.
OutputFor each query of the second type print on a single line the number written in the vertex from the query. Print the number modulo 1000000007 (109 + 7).
Examples input copy3output copy
1 1
3
1 1 2 1
2 1
2 2
2Note
1
You can read about a rooted tree here: http://en.wikipedia.org/wiki/Tree_(graph_theory).
#pragma GCC optimize(2)#include <bits/stdc++.h>#define lowbit(x) x&(-x)using namespace std;const int maxn = 1e6 + 108;typedef long long ll;const ll mod=1e9+7;int n,q;int fa[maxn],dfn[maxn],siz[maxn],dep[maxn];vector<int>e[maxn];inline int dfs(int cur){ static int tot=0; dfn[cur]=++tot; for(register int i=0;i<e[cur].size();++i){ int to=e[cur][i]; siz[cur]+=dfs(to); } //printf("deBUG dfn[%d] = %d\n",cur,dfn[cur]); return ++siz[cur];}struct BIT{ ll o[maxn]; inline voID init(){ memset(o,0,sizeof(o)); } inline voID update(int pos,ll val){ while(pos<=n){ o[pos]=(o[pos]+val)%mod; pos+=lowbit(pos); } } inline ll query(int pos){ ll res=0; while(pos){ res=(res+o[pos])%mod; pos-=lowbit(pos); } return res%mod; }}atom1,atom2;int main() {#ifndef ONliNE_JUDGE freopen("1.txt","r",stdin);#endif scanf("%d",&n); for(register int i=2;i<=n;++i){ scanf("%d",&fa[i]); e[fa[i]].emplace_back(i); dep[i]=dep[fa[i]]+1; } atom1.init(); atom2.init(); dfs(1); scanf("%d",&q); int type,v,x; ll k; while(q--){ scanf("%d",&type); if(type==1){ scanf("%d%d%lld",&v,&x,&k); atom1.update(dfn[v],x+dep[v]*k%mod); atom1.update(dfn[v]+siz[v],mod-(x+dep[v]*k%mod)%mod); atom2.update(dfn[v],k); atom2.update(dfn[v]+siz[v],(mod-k%mod)%mod); } else{ scanf("%d",&v); printf("%lld\n",(atom1.query(dfn[v])%mod-dep[v]*atom2.query(dfn[v])%mod+mod)%mod); } } return 0;}总结
以上是内存溢出为你收集整理的On Changing Tree全部内容,希望文章能够帮你解决On Changing Tree所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)