单因素做完之后要确定一个因素范围,因为正交试验的目的是得出最优组合,因此因素范围选择应该在对实验结果有起伏的范围之内,这样才能选出最优组合,如果没有起伏。得出的实验结构影响曲线其实跟单因素实验时是一样趋势的。
一般选择一个段,然后水平值是这个因素水平段的平均值。比如说你做3个水平吧,然后因素取值范围在12~14之间,这样一般3个水平分别为:12,13,14 。尽量取平均的值,当然取3个实验水平12,125,14也是可以的。
扩展资料:
正交表具有两条性质:每一列中各数字出现的次数都一样多。任何两列所构成的各有序数对出现的次数都一样多。所以称之谓正交表。
由总平方和与各因素平方和即可求得误差平方和,亦称剩余平方和。是总平方和减各因素平方和所得。如正交表有一空列,则该列的平方和就是误差平方和。
但在正交表饱和试验的情况下,即所有各列全部排满时,误差平方和一般用各因素平方和中几个最小的平方和之和来代替,同时,这几个因素不再作进一步的分析。
均分分批实验法指每批实验均匀地安排在实验范围内,其示意图如图2所示。每批做2n个实验,将实验范围均匀地分为2n+1等份,在其2n个分点处做第一批实验。
参考资料来源:百度百科--单因素实验
参考资料来源:百度百科--正交试验
正交实验设计方法是研究与处理多因素实验的一种科学方法。它最早产生于 20 世纪20 年代英国罗隆姆斯特农业实验站 ( 侯化国等,1985) ,后来由日本田口玄一博士在 50年代编制出正交实验表,60 年代初从日本传入中国。它依据 Galois 理论导出的正交表,从大量实验条件中挑选出适量、有代表性的条件来合理地安排实验,被称为国际标准型正交实验法。
正交表是运用组合数学理论构造的一种规格化的表格,通常有两种表达形式,一种是非交互性的正交表,另一种是交互性的正交表。下面只简单介绍第一种正交表,其通用符号可以表示为:
Ln( ji)
式中: L———正交表符号;
n———正交表的行数 ( 实验次数或实验方案数) ;
j———正交表中的数码 ( 因素的水平数或称位级数) ;
i———正交表的列数 ( 实验因素的个数) 。
举例来说,某工厂想提高某种产品的质量或产量,对工艺中 3 个主要因素各按 3 个水平进行实验 ( 表 5 1) ,以寻求最适宜的 *** 作条件。
表 5 1 3 因素与 3 水平的选择
那么,很容易想到的是全面搭配法方案,如图 5 1 所示。此方案数据点分布的均匀性极好,因素和水平的搭配十分全面,唯一的缺点是实验次数多达 33= 27 次 ( 指数 3 代表3 个因素,底数 3 代表每个因素有 3 个水平) 。因素、水平数愈多,则实验次数愈多。例如,做一个 6 因素 3 水平的实验,就需 36= 729 次实验,显然在人力、物力和时间上都难以做到,而且付出的经济代价也高得多。因此,需要寻找一种合适的实验设计方法。
图 5 1 全面搭配法方案
如果采用简单比较法方案,即先固定 p1和 T1,只改变 t,观察因素 t 不同水平的影响,做了如图 5 2 ( 1) 所示的 3 次实验,发现 t = t2时的实验效果最好 ( 好的用 □ 表示) ,所得产品的产量最高,因此认为在后面的实验中因素 t 应取 t2水平。然后固定 p1和t2,改变 T 的 3 次实验,如图 5 2 ( 2) 所示,发现 T = T3时的实验效果最好,因此认为因素 T 应取 T3水平。最后固定 T3和 t2,改变 p 的 3 次实验,如图 5 2 ( 3) 所示,发现因素p 宜取 p2水平。
图 5 2 简单比较法方案
因此可以得出结论: 为提高所得产品的产量,最适宜的 *** 作条件为 p2、T3、t2。与全面搭配法方案相比,简单比较法方案的优点是实验次数减少,只需做 9 次实验。但必须指出,简单比较法方案的实验结果是不可靠的。因为: ①在改变 t 值 ( 或 T 值,或 p 值) 的3 次实验中,说 t2( 或 T3或 p2) 水平最好是有条件的,在 p≠p1,T≠T1时,t2水平不是最好的可能性是存在的; ②在改变 t 的 3 次实验中,固定p = p2,T = T3,应该说也是可以的,是随意的,故在此方案中数据点分布的均匀性是毫无保障的; ③用这种方法比较条件好坏时,只是对单个的实验数据进行数值上的简单比较,不能排除必然存在的实验数据误差的干扰。
运用正交实验设计方法,不仅兼有上述两个方案的优点,而且实验次数少,数据点分布均匀 ( 图 5 3) ,结果的可靠性也好。正交实验设计方法是用正交表来安排实验的,对于上述实例适用的正交表是 L9( 34) ,其实验安排见表 5 2。
图 5 3 正交实验法方案
表 5 2 L9( 34) 正交实验安排
选择 L9( 34) 正交表是因为在 3 水平的正交表中,常用的有 L9( 34) 和 L27( 313)等,由于3 水平正交表中不存在3 因素3 水平的正交表,即不能完全 “对号入座”。所以,只有选用 L9( 34) 才能放下 3 因素。虽然空闲一列,但该表较之其他各表实验次数最少。我们选择此正交表共进行 9 次试验,它是从可能进行搭配的 34= 81 次实验中一次挑出来的,只要条件许可,还可以同时进行实验。
所有的正交表与 L9( 34) 正交表一样,都具有以下两个特点:
1) 在每一列中,各个不同数字出现的次数相等,即具有整齐可比性。在表 L9( 34)中,每一列有 3 个水平,水平 1、2、3 都是各出现 3 次。
2) 表中任意两列间横向组合的数字对搭配次数也是相等的,即具有均匀分散性。在表 L9( 34) 中,任意两列间横向组合在一起形成的数字对共有 9 个: ( 1,1) , ( 1,2) ,( 1,3) ,( 2,1) ,( 2,2) ,( 2,3) ,( 3,1) ,( 3,2) ,( 3,3) ,每一个数字对各出现一次。
这两个特点称为正交性。正是由于正交表具有上述特点,保证了用正交表安排的实验方案中因素水平是均衡搭配的,数据点的分布是均匀的。因素、水平数越多,运用正交实验设计方法,越能显示出它的优越性,如上述提到的 6 因素 3 水平实验,用全面搭配方案需 729 次,若用正交表 L27( 313) 来安排,则只需做 27 次实验。
在工农业生产中,因素之间常有交互作用。当上述的因素 p 的数值和水平发生变化时,实验指标随因素 T 变化的规律也发生变化; 或反过来,因素 T 的数值和水平发生变化时,实验指标随因素 p 变化的规律也发生变化。这种情况称为因素 p、T 间有交互作用,记为 p × T,那么就要选取交互性正交表,这方面的内容此处不再赘述,需要时可以查阅相关参考书。
正交表设计时遵循以下步骤:
1) 明确实验目的,确定考核指标。
2) 挑因素,选水平,确定因素水平表。
3) 选择适宜的正交表; 原则上被选用正交表的因子数与水平数等于或大于要进行实验考察的因子数与水平数,并且使实验次数最少。
4) 因素水平上正交表,确定实验方案,并按实验方案进行实验。
5) 实验结果分析。
9次。
当析因设计要求的实验次数太多时,一个非常自然的想法就是从析因设计的水平组合中,选择一部分有代表性水平组合进行试验。因此就出现了分式析因设计(fractional factorial designs),但是对于试验设计知识较少的实际工作者来说,选择适当的分式析因设计还是比较困难的。
例如作一个三因素三水平的实验,按全面实验要求,须进行3=27种组合的实验,且尚未考虑每一组合的重复数。若按L9正交表安排实验,只需作9次,按L15正交表进行15次实验,显然大大减少了工作量。因而正交实验设计在很多领域的研究中已经得到广泛应用。
扩展资料
分析方法
1、直接对比法
对试验结果进行简单的直接对比。直接对比法虽然对试验结果给出了一定的说明,但是这个说明是定性的,而且不能肯定地告诉我们最佳的成分组合。显然这种分析方法虽然简单,但是不能令人满意。
2、直观分析法
通过对每一因素的平均极差来分析问题。所谓极差就是平均效果中最大值和最小值的差。有了极差,就可以找到影响指标的主要因素,并可以帮助我们找到最佳因素水平组合。
参考资料来源:百度百科-正交试验设计
参考资料来源:百度百科-正交试验
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)