公式表示y=log以a为底x的对数,如果遇到了指数函数和对数函数的互化,在实际解题的时候,只须要牢牢的抓住对数的定义就能够快速的解题。matlab中的归一化处理有三种方法
1 premnmx、postmnmx、tramnmx
2 restd、poststd、trastd
3 自己编程
(1)线性函数转换,表达式如下:
y=(x-MinValue)/(MaxValue-MinValue)
说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。
(2)对数函数转换,表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。
(3)反余切函数转换,表达式如下:
y=atan(x)2/PI
(4)一个归一化代码
I=double(I);
maxvalue=max(max(I)');%max在把矩阵每列的最大值找到,并组成一个单行的数组,转置一下就会行转换为列,再max就求一个最大的值,如果不转置,只能求出每列的最大值。
f = 1 - I/maxvalue; %为什么要用1去减?
Image1=f;
机器学习模型需要对数据进行归一化
1)归一化后加快了梯度下降求最优解的速度;2)归一化有可能提高精度
1 归一化为什么能提高梯度下降法求解最优解的速度?
如下图所示,蓝色的圈圈图代表的是两个特征的等高线。其中左图两个特征X1和X2的区间相差非常大,X1区间是[0,2000],X2区间是[1,5],其所形成的等高线非常尖。当使用梯度下降法寻求最优解时,很有可能走“之字型”路线(垂直等高线走),从而导致需要迭代很多次才能收敛;
而右图对两个原始特征进行了归一化,其对应的等高线显得很圆,在梯度下降进行求解时能较快的收敛。
因此如果机器学习模型使用梯度下降法求最优解时,归一化往往非常有必要,否则很难收敛甚至不能收敛。
由公式x=e^lnx(lnx=e的某个值次方等于x,e^(e的某个值次方)等于x,即x=e^lnx) 转化x=e^lnx (m^x代替x,m^x为任意指数,任意指数的值也同等于x)
m^x=e^lnm^x (m^x=x)
m^x=e^[(lnm)x ](幂法则 loga X^y=ylogaX)
以此任意指数值m^x都可以转变以e为底的对数函数。
指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别。
对数函数y=logax(a>0,且a≠1)。
指数函数y=ax与对数函数y=logax互为反函数。
扩展资料
1、指数运算
有理数指数及其运算是本章的基础内容,要明确运算法则,化简或求值是本章知识点的主要呈现方式。
在进行幂和根式的化简时,一般是先将根式化成幂的形式,并尽可能地统一成分数指数幂的形式,再利用幂的运算性质进行化简、求值或计算,以达到化繁为简的目的。
2、对数运算
(1)同底对数化简的常用方法:将同底的两对数的和(差)化成积(商)的对数;将积(商)的对数拆成对数的和(差),根据题目的条件选择恰当的方法。
(2)对常用对数的化简要创设情境,充分利用lg 5+lg 2=1来求解。
(3)对多重对数符号的化简,应从内向外逐层化简求值。
(4)对数的运算性质,要注意只有当式子中所有的对数符号都有意义时,等式才成立。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)