如何理解路径积分

如何理解路径积分,第1张

路径积分是由理查德费曼发明,就是积分沿着一条曲线或直线。比如二元积分,普通积分一般是在由直线段围成的区域上积分,路径积分一般则沿着一条曲线积分。并且路径积分一般是二元以上积分。在量子物理、凝聚态物理、数学物理、量子多体及非线性物理等领域有着十分广泛的应用。在数学中,曲线积分或路径积分是积分的一种。积分函数的取值沿的不是区间,而是特定的曲线,称为积分路径。曲线积分有很多种类,当积分路径为闭合曲线时,称为环路积分或围道积分。在曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。带有权重是曲线积分与一般区间上的积分的主要不同点。

全微分方程里面积分与路径无关,必要条件就是这两个偏导相等,但是别忘了还有充分条件的,就是:“平面单连通区域并且是两个偏导相等”,因为要是复连通的有空洞的,即使满足两个偏导相等的必要条件,也是两个边界条件叠加之后的最终结果为0,但是所给的曲线积分不一定为0!所以不满足全微分条件的。

如果函数z=f(x, y) 在(x, y)处的全增量Δz=f(x+Δx,y+Δy)-f(x,y)。

可以表示为Δz=AΔx+BΔy+o(ρ),其中A、B不依赖于Δx, Δy,仅与x,y有关,ρ趋近于0(ρ=√[(Δx)2+(Δy)2]),此时称函数z=f(x, y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为dz即。

dz=AΔx +BΔy该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10375793.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存