在图像处理方面什么是SIFT匹配?

在图像处理方面什么是SIFT匹配?,第1张

一、特征点(角点)匹配
图像匹配能够应用的场合非常多,如目标跟踪,检测,识别,图像拼接等,而角点匹配最核心的技术就要属角点匹配了,所谓角点匹配是指寻找两幅图像之间的特征像素点的对应关系,从而确定两幅图像的位置关系。
角点匹配可以分为以下四个步骤:
1、提取检测子:在两张待匹配的图像中寻找那些最容易识别的像素点(角点),比如纹理丰富的物体边缘点等。
2、提取描述子:对于检测出的角点,用一些数学上的特征对其进行描述,如梯度直方图,局部随机二值特征等。检测子和描述子的常用提取方法有:sift,harris,surf,fast,agast,brisk,freak,brisk,brief/orb等。
3、匹配:通过各个角点的描述子来判断它们在两张图像中的对应关系,常用方法如 flann等。
4、消噪:去除错误匹配的外点,保留正确的匹配点。常用方法有KDTREE,BBF,Ransac,GTM等。
二、SIFT匹配方法的提出
为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,SIFT的作者Lowe提出了比较最近邻距离与次近邻距离的SIFT匹配方式:取一幅图像中的一个SIFT关键点,并找出其与另一幅图像中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离得到的比率ratio少于某个阈值T,则接受这一对匹配点。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。显然降低这个比例阈值T,SIFT匹配点数目会减少,但更加稳定,反之亦然。
Lowe推荐ratio的阈值为08,但作者对大量任意存在尺度、旋转和亮度变化的两幅进行匹配,结果表明ratio取值在0 4~0 6 之间最佳,小于0 4的很少有匹配点,大于0 6的则存在大量错误匹配点,所以建议ratio的取值原则如下:
ratio=0 4:对于准确度要求高的匹配;
ratio=0 6:对于匹配点数目要求比较多的匹配;
ratio=0 5:一般情况下。
三、常见的SIFT匹配代码
1、vlfeat中sift toolbox中的vl_ubcmatchc使用的是普通的欧氏距离进行匹配(该SIFT代码贡献自Andrea
Vedaldi)。
2、Lowe的C++代码中使用的是欧氏距离,但是在matlab代码中为了加速计算,使用的是向量夹角来近似欧氏距离:先将128维SIFT特征向量归一化为单位向量(每个数除以平方和的平方根),然后点乘来得到向量夹角的余弦值,最后利用反余弦(acos函数)求取向量夹角。实验证明Lowe的办法正确率和耗时都很不错。
同样,也可以采用knnsearch函数求最近点和次近点:knnsearch采用euclidean距离时得到的结果与lowe采用的近似方法结果几乎一致,正好印证了模拟欧氏距离的效果。
3、Rob Hess的OpenSIFT采用了KDTREE来对匹配进行优化。
4、CSDN大神v_JULY_v实现了KDTREE+BBF对SIFT匹配的优化和消除错误匹配:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
- 结构之法 算法之道 - 博客频道 - CSDNNET。
5、OpenCV中features2d实现的SIFT匹配有多种matcher:VectorDescriptorMatcher,BFMatcher(Brute-force descriptor matcher),FernDescriptorMatcher,OneWayDescriptorMatcher,FlannBasedMatcher 等等。目前只知道采用knnsearch,提供了多种距离度量方式,具体区别不懂。
 

一、特征点(角点)匹配
图像匹配能够应用的场合非常多,如目标跟踪,检测,识别,图像拼接等,而角点匹配最核心的技术就要属角点匹配了,所谓角点匹配是指寻找两幅图像之间的特征像素点的对应关系,从而确定两幅图像的位置关系。
角点匹配可以分为以下四个步骤:
1、提取检测子:在两张待匹配的图像中寻找那些最容易识别的像素点(角点),比如纹理丰富的物体边缘点等。
2、提取描述子:对于检测出的角点,用一些数学上的特征对其进行描述,如梯度直方图,局部随机二值特征等。检测子和描述子的常用提取方法有:sift,harris,surf,fast,agast,brisk,freak,brisk,brief/orb等。
3、匹配:通过各个角点的描述子来判断它们在两张图像中的对应关系,常用方法如 flann等。
4、消噪:去除错误匹配的外点,保留正确的匹配点。常用方法有KDTREE,BBF,Ransac,GTM等。
二、SIFT匹配方法的提出
为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,SIFT的作者Lowe提出了比较最近邻距离与次近邻距离的SIFT匹配方式:取一幅图像中的一个SIFT关键点,并找出其与另一幅图像中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离得到的比率ratio少于某个阈值T,则接受这一对匹配点。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。显然降低这个比例阈值T,SIFT匹配点数目会减少,但更加稳定,反之亦然。
Lowe推荐ratio的阈值为08,但作者对大量任意存在尺度、旋转和亮度变化的两幅进行匹配,结果表明ratio取值在0 4~0 6 之间最佳,小于0 4的很少有匹配点,大于0 6的则存在大量错误匹配点,所以建议ratio的取值原则如下:
ratio=0 4:对于准确度要求高的匹配;
ratio=0 6:对于匹配点数目要求比较多的匹配;
ratio=0 5:一般情况下。
三、常见的SIFT匹配代码
1、vlfeat中sift toolbox中的vl_ubcmatchc使用的是普通的欧氏距离进行匹配(该SIFT代码贡献自Andrea
Vedaldi)。
2、Lowe的C++代码中使用的是欧氏距离,但是在matlab代码中为了加速计算,使用的是向量夹角来近似欧氏距离:先将128维SIFT特征向量归一化为单位向量(每个数除以平方和的平方根),然后点乘来得到向量夹角的余弦值,最后利用反余弦(acos函数)求取向量夹角。实验证明Lowe的办法正确率和耗时都很不错。
同样,也可以采用knnsearch函数求最近点和次近点:knnsearch采用euclidean距离时得到的结果与lowe采用的近似方法结果几乎一致,正好印证了模拟欧氏距离的效果。
3、Rob Hess的OpenSIFT采用了KDTREE来对匹配进行优化。
4、CSDN大神v_JULY_v实现了KDTREE+BBF对SIFT匹配的优化和消除错误匹配:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
- 结构之法 算法之道 - 博客频道 - CSDNNET。
5、OpenCV中features2d实现的SIFT匹配有多种matcher:VectorDescriptorMatcher,BFMatcher(Brute-force descriptor matcher),FernDescriptorMatcher,OneWayDescriptorMatcher,FlannBasedMatcher 等等。目前只知道采用knnsearch,提供了多种距离度量方式,具体区别不懂。
 

一、特征点(角点)匹配图像匹配能够应用的场合非常多,如目标跟踪,检测,识别,图像拼接等,而角点匹配最核心的技术就要属角点匹配了,所谓角点匹配是指寻找两幅图像之间的特征像素点的对应关系,从而确定两幅图像的位置关系。角点匹配可以分为以下四个步骤:1、提取检测子:在两张待匹配的图像中寻找那些最容易识别的像素点(角点),比如纹理丰富的物体边缘点等。2、提取描述子:对于检测出的角点,用一些数学上的特征对其进行描述,如梯度直方图,局部随机二值特征等。检测子和描述子的常用提取方法有:sift,harris,surf,fast,agast,brisk,freak,brisk,brief/orb等。3、匹配:通过各个角点的描述子来判断它们在两张图像中的对应关系,常用方法如 flann等。4、消噪:去除错误匹配的外点,保留正确的匹配点。常用方法有KDTREE,BBF,Ransac,GTM等。二、SIFT匹配方法的提出为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点,SIFT的作者Lowe提出了比较最近邻距离与次近邻距离的SIFT匹配方式:取一幅图像中的一个SIFT关键点,并找出其与另一幅图像中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离得到的比率ratio少于某个阈值T,则接受这一对匹配点。因为对于错误匹配,由于特征空间的高维性,相似的距离可能有大量其他的错误匹配,从而它的ratio值比较高。显然降低这个比例阈值T,SIFT匹配点数目会减少,但更加稳定,反之亦然。Lowe推荐ratio的阈值为08,但作者对大量任意存在尺度、旋转和亮度变化的两幅进行匹配,结果表明ratio取值在0 4~0 6 之间最佳,小于0 4的很少有匹配点,大于0 6的则存在大量错误匹配点,所以建议ratio的取值原则如下:ratio=0 4:对于准确度要求高的匹配;ratio=0 6:对于匹配点数目要求比较多的匹配;ratio=0 5:一般情况下。三、常见的SIFT匹配代码1、vlfeat中sift toolbox中的vl_ubcmatchc使用的是普通的欧氏距离进行匹配(该SIFT代码贡献自AndreaVedaldi)。2、Lowe的C++代码中使用的是欧氏距离,但是在matlab代码中为了加速计算,使用的是向量夹角来近似欧氏距离:先将128维SIFT特征向量归一化为单位向量(每个数除以平方和的平方根),然后点乘来得到向量夹角的余弦值,最后利用反余弦(acos函数)求取向量夹角。实验证明Lowe的办法正确率和耗时都很不错。同样,也可以采用knnsearch函数求最近点和次近点:knnsearch采用euclidean距离时得到的结果与lowe采用的近似方法结果几乎一致,正好印证了模拟欧氏距离的效果。3、Rob Hess的OpenSIFT采用了KDTREE来对匹配进行优化。4、CSDN大神v_JULY_v实现了KDTREE+BBF对SIFT匹配的优化和消除错误匹配:从K近邻算法、距离度量谈到KD树、SIFT+BBF算法- 结构之法 算法之道 - 博客频道 - CSDNNET。5、OpenCV中features2d实现的SIFT匹配有多种matcher:VectorDescriptorMatcher,BFMatcher(Brute-force descriptor matcher),FernDescriptorMatcher,OneWayDescriptorMatcher,FlannBasedMatcher 等等。目前只知道采用knnsearch,提供了多种距离度量方式,具体区别不懂。 


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10384133.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存