遗传算法是群智能优化计算中应用最为广泛、最为成功、最具代表性的智能优化方法。它是以达尔文的生物进化论和孟德尔的遗传变异理论为基础,模拟生物进化过程和机制,产生的一种群体导向随机搜索技术和方法。
遗传算法的基本思想:首先根据待求解优化问题的目标函数构造一个适应度函数。然后,按照一定的规则生成经过基因编码的初始群体,对群体进行评价、遗传运算(交叉和变异)、选择等 *** 作。经过多次进化,获得适应度最高的一个或几个最优个体作为问题的最优解。
编码是对问题的可行解的遗传表示,是影响算法执行效率的关键因素的之一。遗传算法中,一个解 称为个体或染色体(chromosome),染色体由被称为基因(gene)的离散单元组成,每个基因控制颜色体的一个或多个特性,通常采用固定长度的0-1二进制编码,每个解对应一个唯一的二进制编码串编码空间中的二进制位串称为基因型(genotype)。而实际所表示问题的解空间的对应点称为表现型(phenotype)。
种群由个体构成,每个个体的染色体对应优化问题的一个初始解。
适应度函数是评价种群中个体对环境适应能力的唯一确定性指标,体现出“适者生存,优胜劣汰”这一自然选择原则。
遗传算法在每次迭代过程中,在父代种群中采用某种选择策略选择出指定数目的哥特体提进行遗传 *** 作。最常用的选择策略是正比选择(proportional selection)策略。
在 交叉算子中,通常由两个被称为父代(parent)的染色体组合,形成新的染色体,称为子代(offspring)。父代是在种群中根据个体适应度进行选择,因此适应度较高的染色体的基因更有可能被遗传到下一代 。通过在迭代过程中不断地应用交叉算子,使优良个体的基因得以在种群中频繁出现,最终使得整个种群收敛到一个最优解。
在染色体交叉之后产生的子代个体,其基因位可能以很小的概率发生转变,这个过程称为变异。变异是为了增强种群的多样性,将搜索跳出局部最优解。
遗传算法的停止准则一般采用设定最大迭代次数或适应值函数评估次数,也可以是规定的搜索精度。
已Holland的基本GA为例介绍算法等具体实现,具体的执行过程描述如下:
Step 1: 初始化 。随机生成含有 个个体的初始种群 ,每个个体经过编码对应着待求解优化问题的一个初始解。
Step 2: 计算适应值 。个体 ,由指定的适应度函数评价其适应环境的能力。不同的问题,适应度函数的构造方式也不同。对函数优化问题,通常取目标函数作为适应度函数。
Step 3: 选择 。根据某种策略从当前种群中选择出 个个体作为重新繁殖的下一代群体。选择的依据通常是个体的适应度的高低,适应度高的个体相比适应度低的个体为下一代贡献一个或多个后代的概率更大。选择过程提现了达尔文“适者生存”原则。
Step 4: 遗传 *** 作 。在选出的 个个体中,以事件给定的杂交概率 任意选择出两个个体进行 交叉运算 ,产生两个新的个体,重复此过程直到所有要求杂交的个体杂交完毕。根据预先设定的变异概率 在 个个体中选择出若干个体,按一定的策略对选出的个体进行 变异运算 。
Step 5: 检验算法等停止条件 。若满足,则停止算法的执行,将最优个体的染色体进行解码得到所需要的最优解,否则转到 Step 2 继续进行迭代过程。
遗传算法本质上是对染色体模式所进行的一系列运算,即通过选择算子将当前种群中的优良模式遗传到下一代种群中,利用交叉算子进行模式重组,利用变异算子进行模式突变。
步骤
基本框架
1编码
由于遗传算法不能直接处理问题空间的参数,因此必须通过编码将要求解的问题表示成遗传空间的染色体或者个体。这一转换 *** 作就叫做编码,也可以称作(问题的)表示(representation)。
评估编码策略常采用以下3个规范:
(a)完备性(completeness):问题空间中的所有点(候选解)都能作为GA空间中的点(染色体)表现。
(b)健全性(soundness): GA空间中的染色体能对应所有问题空间中的候选解。
(c)非冗余性(nonredundancy):染色体和候选解一一对应。
2适应度函数
进化论中的适应度,是表示某一个体对环境的适应能力,也表示该个体繁殖后代的能力。遗传算法的适应度函数也叫评价函数,是用来判断群体中的个体的优劣程度的指标,它是根据所求问题的目标函数来进行评估的。
遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传 *** 作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值。由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。
适应度函数的设计主要满足以下条件:
(a)单值、连续、非负、最大化
(b) 合理、一致性
(c)计算量小
(d)通用性强。
在具体应用中,适应度函数的设计要结合求解问题本身的要求而定。适应度函数设计直接影响到遗传算法的性能。
3初始群体选取
遗传算法中初始群体中的个体是随机产生的。一般来讲,初始群体的设定可采取如下的策略:
(a)根据问题固有知识,设法把握最优解所占空间在整个问题空间中的分布范围,然后,在此分布范围内设定初始群体。
(b)先随机生成一定数目的个体,然后从中挑出最好的个体加到初始群体中。这种过程不断迭代,直到初始群体中个体数达到了预先确定的规模。
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射即编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)