如何判断UTF8和UNICODE和GBK编码

如何判断UTF8和UNICODE和GBK编码,第1张

UTF8并不算是一种电脑编码,而是一种储存和传送的格式,如前所述,每个Unicode/UCS字符都以 2或4个bytes来储存,看看以下的比较:
以"I am Chinese"为例
用ANSI储存:12 Bytes
用Unicode/UCS2储存:24 Bytes + 2 Bytes(header)
用UCS4储存:48 Bytes + 4 Bytes(header)
以"我是中国人"为例
用ANSI储存:10 Bytes
用Unicode/UCS2储存:10 Bytes + 2 Bytes(header)
用UCS4储存:20 Bytes + 4 Bytes(header)
由此可见直接以Unicode/UCS的原始形式来储存是一种极大的浪费,而且也不利于互联网的传输(中文稍为合算一点^_^)。
有见及此,Unicode/UCS的压缩形式--UTF8出现了,套用官方网站的首句话『UTF-8 stands for Unicode Transformation Format-8 It is an octet (8-bit) lossless encoding of Unicode characters』,由于UTF也适用于编码UCS,故亦可称为『UCS transformation formats (UTF)』
UTF8是以8bits即1Bytes为编码的最基本单位,当然也可以有基于16bits和32bits的形式,分别称为UTF16和UTF32,但目前用得不多,而UTF8则被广泛应用在文件储存和网络传输中。
编码原理
先看这个模板:
UCS-4 range (hex) UTF-8 octet sequence (binary)
0000 0000-0000 007F 0xxxxxxx
0000 0080-0000 07FF 110xxxxx 10xxxxxx
0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0020 0000-03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
0400 0000-7FFF FFFF 1111110x 10xxxxxx 10xxxxxx
编码步骤:
1) 首先确定需要多少个8bits(octets)
2) 按照上述模板填充每个octets的高位bits
3) 把字符的bits填充至x中,字符顺序:低位→高位,UTF8顺序:最后一个octet的最末位x→第一个octet最高位x
4) 解码的原理一样。
实例:(留意每个bit的颜色,粗体字为模板内容)
UCS-4 UTF-8
HEX BIN Bytes BIN HEX Bytes
0000 000A 00001010 4 00001010 0A 1
0000 0099 10011001 4 11000010 10011001 C2 99 2
0000 8D99 10001101 10011001 4 11101000 10110110 10011001 E8 B6 99 3
不知大家看懂了没有,其实不懂也无所谓,反正又不用自己算,程式可以完全代劳。
以UTF8格式储存的文件档首标识为EF BB BF。
效率
从上述编码原理中得出的结论是:
1每个英文字母、数字所占的空间为1 Byte;
2泛欧语系、斯拉夫语字母占2 Bytes;
3汉字占3 Bytes。
由此可见UTF8对英文来说是个非常诱人的方案,但对中文来说则不太合算,无论用ANSI还是 Unicode/UCS2来编码都只用2 Bytes,但用UTF8则需要3 Bytes。
以下是一些统计资料,显示用UTF8来储存文件每个字符所需的平均字节
1拉丁语系平均用11 Bytes;
2希腊文、俄文、阿拉伯文和希伯莱文平均用17 Bytes;
3其他大部份文字如中文、日文、韩文、Hindi(北印度语)用约3 Bytes;
4用超过4 Bytes的都是些非常少用的文字符号。
Unicode(统一码、万国码、单一码)是一种在计算机上使用的字符编码。它为每种语言中的每个字符设定了统一并且唯一的二进制编码,以满足跨语言、跨平台进行文本转换、处理的要求。1990年开始研发,1994年正式公布。随着计算机工作能力的增强,Unicode也在面世以来的十多年里得到普及。
Unicode 是基于通用字符集(Universal Character Set)的标准来发展,并且同时也以书本的形式(The Unicode Standard,目前第五版由Addison-Wesley Professional出版,ISBN-10: 0321480910)对外发表。
2006年6月的最新版本的 Unicode 是 2005年3月31日推出的Unicode 410 。另外,50 Beta已于2005年12月12日推出,以供各会员评价。
[编辑本段]Unicode 的编码和实现
大概来说,Unicode 编码系统可分为编码方式和实现方式两个层次。
1编码方式
Unicode是国际组织制定的可以容纳世界上所有文字和符号的字符编码方案。Unicode用数字0-0x10FFFF来映射这些字符,最多可以容纳1114112个字符,或者说有1114112个码位。码位就是可以分配给字符的数字。UTF-8、UTF-16、UTF-32都是将数字转换到程序数据的编码方案。
Unicode字符集可以简写为UCS(Unicode Character Set)。早期的Unicode标准有UCS-2、UCS-4的说法。UCS-2用两个字节编码,UCS-4用4个字节编码。UCS-4根据最高位为0的最高字节分成2^7=128个group。每个group再根据次高字节分为256个平面(plane)。每个平面根据第3个字节分为256行 (row),每行有256个码位(cell)。group 0的平面0被称作BMP(Basic Multilingual Plane)。将UCS-4的BMP去掉前面的两个零字节就得到了UCS-2。
每个平面有2^16=65536个码位。Unicode计划使用了17个平面,一共有1765536=1114112个码位。在Unicode 500版本中,已定义的码位只有238605个,分布在平面0、平面1、平面2、平面14、平面15、平面16。其中平面15和平面16上只是定义了两个各占65534个码位的专用区(Private Use Area),分别是0xF0000-0xFFFFD和0x100000-0x10FFFD。所谓专用区,就是保留给大家放自定义字符的区域,可以简写为PUA。
平面0也有一个专用区:0xE000-0xF8FF,有6400个码位。平面0的0xD800-0xDFFF,共2048个码位,是一个被称作代理区(Surrogate)的特殊区域。代理区的目的用两个UTF-16字符表示BMP以外的字符。在介绍UTF-16编码时会介绍。
如前所述在Unicode 500版本中,238605-655342-6400-2408=99089。余下的99089个已定义码位分布在平面0、平面1、平面2和平面14上,它们对应着Unicode目前定义的99089个字符,其中包括71226个汉字。平面0、平面1、平面2和平面14上分别定义了52080、3419、43253和337个字符。平面2的43253个字符都是汉字。平面0上定义了27973个汉字。
2实现方式
在Unicode中:汉字“字”对应的数字是23383。在Unicode中,我们有很多方式将数字23383表示成程序中的数据,包括:UTF-8、UTF-16、UTF-32。UTF是“UCS Transformation Format”的缩写,可以翻译成Unicode字符集转换格式,即怎样将Unicode定义的数字转换成程序数据。例如,“汉字”对应的数字是0x6c49和0x5b57,而编码的程序数据是:
BYTE data_utf8[] = {0xE6, 0xB1, 0x89, 0xE5, 0xAD, 0x97}; // UTF-8编码
WORD data_utf16[] = {0x6c49, 0x5b57}; // UTF-16编码
DWORD data_utf32[] = {0x6c49, 0x5b57}; // UTF-32编码
这里用BYTE、WORD、DWORD分别表示无符号8位整数,无符号16位整数和无符号32位整数。UTF-8、UTF-16、UTF-32分别以BYTE、WORD、DWORD作为编码单位。“汉字”的UTF-8编码需要6个字节。“汉字”的UTF-16编码需要两个WORD,大小是4个字节。“汉字”的UTF-32编码需要两个DWORD,大小是8个字节。根据字节序的不同,UTF-16可以被实现为UTF-16LE或UTF-16BE,UTF-32可以被实现为UTF-32LE或UTF-32BE。下面介绍UTF-8、UTF-16、UTF-32、字节序和BOM。
UTF-8
UTF-8以字节为单位对Unicode进行编码。从Unicode到UTF-8的编码方式如下:
Unicode编码(16进制) ║ UTF-8 字节流(二进制)
000000 - 00007F ║ 0xxxxxxx
000080 - 0007FF ║ 110xxxxx 10xxxxxx
000800 - 00FFFF ║ 1110xxxx 10xxxxxx 10xxxxxx
010000 - 10FFFF ║ 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
UTF-8的特点是对不同范围的字符使用不同长度的编码。对于0x00-0x7F之间的字符,UTF-8编码与ASCII编码完全相同。UTF-8编码的最大长度是4个字节。从上表可以看出,4字节模板有21个x,即可以容纳21位二进制数字。Unicode的最大码位0x10FFFF也只有21位。
例1:“汉”字的Unicode编码是0x6C49。0x6C49在0x0800-0xFFFF之间,使用用3字节模板了:1110xxxx 10xxxxxx 10xxxxxx。将0x6C49写成二进制是:0110 1100 0100 1001, 用这个比特流依次代替模板中的x,得到:11100110 10110001 10001001,即E6 B1 89。
例2:Unicode编码0x20C30在0x010000-0x10FFFF之间,使用用4字节模板了:11110xxx 10xxxxxx 10xxxxxx 10xxxxxx。将0x20C30写成21位二进制数字(不足21位就在前面补0):0 0010 0000 1100 0011 0000,用这个比特流依次代替模板中的x,得到:11110000 10100000 10110000 10110000,即F0 A0 B0 B0。
UTF-16
UTF-16编码以16位无符号整数为单位。我们把Unicode编码记作U。编码规则如下:
如果U<0x10000,U的UTF-16编码就是U对应的16位无符号整数(为书写简便,下文将16位无符号整数记作WORD)。
如果U≥0x10000,我们先计算U'=U-0x10000,然后将U'写成二进制形式:yyyy yyyy yyxx xxxx xxxx,U的UTF-16编码(二进制)就是:110110yyyyyyyyyy 110111xxxxxxxxxx。
为什么U'可以被写成20个二进制位?Unicode的最大码位是0x10ffff,减去0x10000后,U'的最大值是0xfffff,所以肯定可以用20个二进制位表示。例如:Unicode编码0x20C30,减去0x10000后,得到0x10C30,写成二进制是:0001 0000 1100 0011 0000。用前10位依次替代模板中的y,用后10位依次替代模板中的x,就得到:1101100001000011 1101110000110000,即0xD843 0xDC30。
按照上述规则,Unicode编码0x10000-0x10FFFF的UTF-16编码有两个WORD,第一个WORD的高6位是110110,第二个WORD的高6位是110111。可见,第一个WORD的取值范围(二进制)是11011000 00000000到11011011 11111111,即0xD800-0xDBFF。第二个WORD的取值范围(二进制)是11011100 00000000到11011111 11111111,即0xDC00-0xDFFF。
为了将一个WORD的UTF-16编码与两个WORD的UTF-16编码区分开来,Unicode编码的设计者将0xD800-0xDFFF保留下来,并称为代理区(Surrogate):
D800-DB7F ║ High Surrogates ║ 高位替代
DB80-DBFF ║ High Private Use Surrogates ║ 高位专用替代
DC00-DFFF ║ Low Surrogates ║ 低位替代
高位替代就是指这个范围的码位是两个WORD的UTF-16编码的第一个WORD。低位替代就是指这个范围的码位是两个WORD的UTF-16编码的第二个WORD。那么,高位专用替代是什么意思?我们来解答这个问题,顺便看看怎么由UTF-16编码推导Unicode编码。
如果一个字符的UTF-16编码的第一个WORD在0xDB80到0xDBFF之间,那么它的Unicode编码在什么范围内?我们知道第二个WORD的取值范围是0xDC00-0xDFFF,所以这个字符的UTF-16编码范围应该是0xDB80 0xDC00到0xDBFF 0xDFFF。我们将这个范围写成二进制:
1101101110000000 11011100 00000000 - 1101101111111111 1101111111111111
按照编码的相反步骤,取出高低WORD的后10位,并拼在一起,得到
1110 0000 0000 0000 0000 - 1111 1111 1111 1111 1111
即0xe0000-0xfffff,按照编码的相反步骤再加上0x10000,得到0xf0000-0x10ffff。这就是UTF-16编码的第一个WORD在0xdb80到0xdbff之间的Unicode编码范围,即平面15和平面16。因为Unicode标准将平面15和平面16都作为专用区,所以0xDB80到0xDBFF之间的保留码位被称作高位专用替代。
UTF-32
UTF-32编码以32位无符号整数为单位。Unicode的UTF-32编码就是其对应的32位无符号整数。
字节序
根据字节序的不同,UTF-16可以被实现为UTF-16LE或UTF-16BE,UTF-32可以被实现为UTF-32LE或UTF-32BE。例如:
Unicode编码 ║ UTF-16LE ║ UTF-16BE ║ UTF32-LE ║ UTF32-BE
0x006C49 ║ 49 6C ║ 6C 49 ║ 49 6C 00 00 ║ 00 00 6C 49
0x020C30 ║ 43 D8 30 DC ║ D8 43 DC 30 ║ 30 0C 02 00 ║ 00 02 0C 30
那么,怎么判断字节流的字节序呢?Unicode标准建议用BOM(Byte Order Mark)来区分字节序,即在传输字节流前,先传输被作为BOM的字符"零宽无中断空格"。这个字符的编码是FEFF,而反过来的FFFE(UTF-16)和FFFE0000(UTF-32)在Unicode中都是未定义的码位,不应该出现在实际传输中。下表是各种UTF编码的BOM:
UTF编码 ║ Byte Order Mark
UTF-8 ║ EF BB BF
UTF-16LE ║ FF FE
UTF-16BE ║ FE FF
UTF-32LE ║ FF FE 00 00
UTF-32BE ║ 00 00 FE FF
[编辑本段]非 Unicode 环境

在非 Unicode 环境下,由于不同国家和地区采用的字符集不一致,很可能出现无法正常显示所有字符的情况。微软公司使用了代码页(Codepage)转换表的技术来过渡性的部分解决这一问题,即通过指定的转换表将非 Unicode 的字符编码转换为同一字符对应的系统内部使用的 Unicode 编码。可以在“语言与区域设置”中选择一个代码页作为非 Unicode 编码所采用的默认编码方式,如936为简体中文GBK,950为正体中文Big5(皆指PC上使用的)。在这种情况下,一些非英语的欧洲语言编写的软件和文档很可能出现乱码。而将代码页设置为相应语言中文处理又会出现问题,这一情况无法避免。从根本上说,完全采用统一编码才是解决之道,但目前上无法做到这一点。
代码页技术现在广泛为各种平台所采用。UTF-7 的代码页是65000,UTF-8 的代码页是65001。
[编辑本段]XML 和 Unicode
XML及其子集HTML采用UTF-8作为标准字集,理论上我们可以在各种支持XML标准的浏览器上显示任何地区文字的网页,只要电脑本身安装有合适的字体即可。可以利用nnn;的格式显示特定的字符。nnn代表该字符的十进制 Unicode 代码。如果采用十六进制代码,在编码之前加上x字符即可。但部分旧版本的浏览器可能无法识别十六进制代码。
然而部分由于 Unicode 版本发展原因,很多浏览器只能显示 UCS-2 完整字符集也即现在使用的 Unicode 版本中的一个小子集。下表可以检验您的浏览器怎样显示各种各样的 Unicode 代码:
代码 字符标准名称 (英语) 在浏览器上的显示
A大写拉丁字母"A" A
szlig; 小写拉丁字母"Sharp S" ß
thorn; 小写拉丁字母"Thorn" þ
Δ大写希腊字母"Delta" Δ
Й 大写斯拉夫字母"Short I" Й
ק希伯来字母"Qof" ק
م阿拉伯字母 "Meem" م
๗泰文数字 7 ๗
ቐ埃塞俄比亚音节文字"Qha" ቐ
あ日语平假名 "A" あ
ア日语片假名 "A" ア
叶简体汉字 "叶" 叶
叶 繁体汉字 "叶" 叶
엽韩国音节文字 " Yeob" 엽
[编辑本段]输入Unicode
除了输入法外, *** 作系统会提供几种方法输入Unicode。像是Windows 2000之后的Windows系统就提供一个可点击的表。例如在Microsoft Word或者金山WPS之下,按下 Alt 键不放,输入 0 和某个字符的 Unicode 编码(十进制),再松开 Alt 键即可得到该字符,如Alt + 033865会得到Unicode字符“叶”(繁体)。另外按Alt + X 组合键,MS Word 也会将光标前面的字符同其十六进制的四位 Unicode 编码进行互相转换。
Unicode 编码表反d
0000-0FFF 8000-8FFF 10000-10FFF 20000-20FFF 28000-28FFF
1000-1FFF 9000-9FFF 21000-21FFF 29000-29FFF
2000-2FFF A000-AFFF 22000-22FFF 2A000-2AFFF
3000-3FFF B000-BFFF 23000-23FFF
4000-4FFF C000-CFFF 1D000-1DFFF 24000-24FFF 2F000-2FFFF
5000-5FFF D000-DFFF 25000-25FFF
6000-6FFF E000-EFFF 26000-26FFF
7000-7FFF F000-FFFF 27000-27FFF E0000-E0FFF
Unicode 目前已经有50版本。世界上有一大批计算机、语言学等科学家专门研究Unicode,到了现在Unicode标准已经不单是一个编码标准,还是记录人类语言文字资料的一个巨大的数据库,同时从事人类文化遗产的发掘和保护工作。
对于中文而言,Unicode 16编码里面已经包含了GB18030里面的所有汉字(27484个字),目前Unicode标准准备把康熙字典的所有汉字放入到Unicode 32bit编码中。
简单地说,Unicode扩展自ASCII字元集。在严格的ASCII中,每个字元用7位元表示,或者电脑上普遍使用的每字元有8位元宽;而Unicode使用全16位元字元集。这使得Unicode能够表示世界上所有的书写语言中可能用於电脑通讯的字元、象形文字和其他符号。Unicode最初打算作为ASCII的补充,可能的话,最终将代替它。考虑到ASCII是电脑中最具支配地位的标准,所以这的确是一个很高的目标。
Unicode影响到了电脑工业的每个部分,但也许会对作业系统和程序设计语言的影响最大。从这方面来看,我们已经上路了。Windows NT从底层支持Unicode(不幸的是,Windows 98只是小部分支援Unicode)。先天即被ANSI束缚的C程序设计语言通过对宽字元集的支持来支持Unicode。
[编辑本段]为什么使用Unicode?
基本上,计算机只是处理数字。它们指定一个数字,来储存字母或其他字符。在创造Unicode之前,有数百种指定这些数字的编码系统。没有一个编码可以包含足够的字符:例如,单单欧州共同体就[1][2]需要好几种不同的编码来包括所有的语言。即使是单一种语言,例如英语,也没有哪一个编码可以适用于所有的字母,标点符号,和常用的技术符号。这些编码系统也会互相冲突。也就是说,两种编码可能使用相同的数字代表两个不同的字符,或使用不同的数字代表相同的字符。任何一台特定的计算机(特别是服务器)都需要支持许多不同的编码,但是,不论什么时候数据通过不同的编码或平台之间,那些数据总会有损坏的危险。
GBK: 汉字国标扩展码,基本上采用了原来GB2312-80所有的汉字及码位,并涵盖了原Unicode中所有的汉字20902,总共收录了883个符号, 21003个汉字及提供了1894个造字码位。 Microsoft简体版中文Windows 95就是以GBK为内码,又由于GBK同时也涵盖了Unicode所有CJK汉字,所以也可以和Unicode做一一对应。
GB码,全称是GB2312-80《信息交换用汉字编码字符集 基本集》,1980年发布,是中文信息处理的国家标准,在大陆及海外使用简体中文的地区(如新加坡等)是强制使用的唯一中文编码。P-Windows32和苹果OS就是以GB2312为基本汉字编码, Windows 95/98则以GBK为基本汉字编码、但兼容支持GB2312。GB码共收录6763个简体汉字、682个符号,其中汉字部分:一级字3755,以拼音排序,二级字3008,以偏旁排序。该标准的制定和应用为规范、推动中文信息化进程起了很大作用。
GBK编码是中国大陆制订的、等同于UCS的新的中文编码扩展国家标准。GBK工作小组于1995年10月,同年12月完成GBK规范。该编码标准兼容GB2312,共收录汉字21003个、符号883个,并提供1894个造字码位,简、繁体字融于一库。
GBK码对字库中偏移量的计算公式为:
[(GBKH-0xB0)0x5E+(GBKL-0xA1)](汉字离散后每个汉字点阵所占用的字节)

一 Unicode编码, /uff01,四位六进制码

在Java中,StringgetBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示 ,如

byte[] b_gbk = "中"getBytes("GBK");

byte[] b_utf8 = "中"getBytes("UTF-8");

byte[] b_iso88591 = "中"getBytes("ISO8859-1");

byte[] b_unicode = "中"getBytes("unicode");

将分别返回“中”这个汉字在GBK、UTF-8和ISO8859-1编码下的byte数组表示,此时b_gbk的长度为2,b_utf8的长度为3,b_iso88591的长度为1,b_unicode 的长度为4(系统的的unicode采用的是big-endian就是前面是两个字节来表示这个的,unicode采用的都是两个字节编码,所以后面是4个字节 )。

而与getBytes相对的,可以通过new String(byte[], decode)的方式来还原这个“中”字时,这个new String(byte[], decode)实际是使用decode指定的编码来将byte[]解析成字符串。

String s_gbk = new String(b_gbk,"GBK");

String s_utf8 = new String(b_utf8,"UTF-8");

String s_iso88591 = new String(b_iso88591,"ISO8859-1");

通过打印s_gbk、s_utf8和s_iso88591,会发现,s_gbk和s_utf8都是“中”,而只有s_iso88591是一个不认识的字符,为什么使用ISO8859-1编码再组合之后,无法还原“中”字呢,其实原因很简单,因为ISO8859-1编码的编码表中,根本就没有包含汉字字符,当然也就无法通过"中"getBytes("ISO8859-1");来得到正确的“中”字在ISO8859-1中的编码值了,所以再通过new String()来还原就无从谈起了。

因此,通过StringgetBytes(String decode)方法来得到byte[]时,一定要确定decode的编码表中确实存在String表示的码值,这样得到的byte[]数组才能正确被还原。

有时候,为了让中文字符适应某些特殊要求(如>应该编码转换的时候丢失了字节,你没有发现你输入的是偶数个字的时候正常,奇数个的时候乱码,具体的字码长度我也不是很了解
String str1 = new String(strgetBytes("UTF-8"),"GBK");
Systemoutprintln(str1length());
String str2 = new String(str1getBytes("GBK"),"UTF-8");
Systemoutprintln(str2length());); 打印出来的字符串长度就不一样的
UTF8每个汉字占用3个字节,这样在某些地方文字个数的计算就和GBK编码的不一样,UTF-8使用可变长度字节来储存 Unicode字符,例如ASCII字母继续使用1字节储存,重音文字、希腊字母或西里尔字母等使用2字节来储存,而常用的汉字就要使用3字节。辅助平面字符则使用4字节。 GB 18030标准采用单字节、双字节和四字节三种方式对字符编码。单字节部分使用0×00至0×7F码(对应于ASCII码的相应码)。双字节部分,首字节码从0×81至0×FE,尾字节码位分别是0×40至0×7E和0×80至0×FE。四字节部分采用GB/T 11383未采用的0×30到0×39作为对双字节编码扩充的后缀,这样扩充的四字节编码,其范围为0×81308130到0×FE39FE39。其中第一、三个字节编码码位均为0×81至0×FE,第二、四个字节编码码位均为0×30至0×39。
按照程序员的称呼,GB2312、GBK到GB18030都属于双字节字符集 (DBCS)。

function cutstr($string, $length, $dot = '') {
global $dbcharset;
$length=2;
if(strlen($string) <= $length) {
return $string;
}
$string = str_replace(array('&', '"', '<', '>'), array('&', '"', '<', '>'), $string);
$strcut = '';
if(strtolower($dbcharset) == 'utf8') {
$n = $tn = $noc = 0;
while($n < strlen($string)) {
$t = ord($string[$n]);
if($t == 9 || $t == 10 || (32 <= $t && $t <= 126)) {
$tn = 1; $n++; $noc++;
} elseif(194 <= $t && $t <= 223) {
$tn = 2; $n += 2; $noc += 2;
} elseif(224 <= $t && $t < 239) {
$tn = 3; $n += 3; $noc += 2;
} elseif(240 <= $t && $t <= 247) {
$tn = 4; $n += 4; $noc += 2;
} elseif(248 <= $t && $t <= 251) {
$tn = 5; $n += 5; $noc += 2;
} elseif($t == 252 || $t == 253) {
$tn = 6; $n += 6; $noc += 2;
} else {
$n++;
}
if($noc >= $length) {
break;
}
}
if($noc > $length) {
$n -= $tn;
}
$strcut = substr($string, 0, $n);
} else {
for($i = 0; $i < $length; $i++) {
$strcut = ord($string[$i]) > 127 $string[$i]$string[++$i] : $string[$i];
}
}
$strcut = str_replace(array('&', '"', '<', '>'), array('&', '"', '<', '>'), $strcut);
return $strcut$dot;
}

//
GBK字符集实际长度计算function
getStrLeng(str){
var
realLength
=
0;
var
len
=
strlength;
var
charCode
=
-1;
for(var
i
=
0;
i
<
len;
i++){
charCode
=
strcharCodeAt(i);
if
(charCode
>=
0
&&
charCode
<=
128)
{
realLength
+=
1;
}else{
//
如果是中文则长度加2
realLength
+=
2;
}
}
return
realLength;}
//
UTF8字符集实际长度计算function
getStrLeng(str){
var
realLength
=
0;
var
len
=
strlength;
var
charCode
=
-1;
for(var
i
=
0;
i
<
len;
i++){
charCode
=
strcharCodeAt(i);
if
(charCode
>=
0
&&
charCode
<=
128)
{
realLength
+=
1;
}else{
//
如果是中文则长度加3
realLength
+=
3;
}
}
return
realLength;}
在JS中字符串的长度不分中英文字符,
每一个字符都算一个长度,这跟PHP里的strlen()函数就不太一样。PHP里的strlen()函数根据字符集把GBK的中文每个2累加,把UTF-8的中文字符每个按3累加。主要是为了匹配数据库的长度范围内,比如GBK的数据库某字段是varchar(10),那么就相当于5个汉字长度,一个汉字等于两个字母长度。如果是UTF8的数据库则是每个汉字长度为3。

这要看使用的哪种编码方式,utf-8的话是用了3个字节,GBK的话是用了两个

>>> '汉'encode('utf-8')
b'\xe6\xb1\x89'
>>> '汉'encode('GBK')
b'\xba\xba'


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10546904.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存