模拟退火 :“渐渐”清楚自己的目标是什么!并不断朝“越发”明确的目标迈进,“越来越”不被诱惑干扰。举例:为了找出地球上最高的山,一只兔子在开始并没有 合适的策略,它随机地跳了很长时间!在这期间,它可能走向高处,也可能踏入平地或沟壑。但是,随着时间的流逝,它“渐渐清醒”! 并“直直地”朝着最高的方向跳去, 最后就到达了珠穆朗玛峰。
粒子群 :信息的社会共享,以一个团队的形式来搜索!团队里成员信息共享,共同进步;避免一个人工作时出现目光短浅,没有全局意识。举例:就像下围棋,只 专注于一个角落的战斗不一定能获取最终的胜利,只有放眼全局,把所有己方的棋子都盘活,相互间彼此帮助,才能获得最后胜利。
蚁群 :和粒子群算法有些相似,都是靠团队的力量共同去找目标!蚁群算法中特殊的是它的"信息素"挥发! 这个效果是其他算法中没有的!
以上所有的最优化算法都很难做到极高的精度,这是必然的: 一是 因为全局搜索已经耗费了大量的时间和资源,再过分强调精度有些不经济; 二是 因为全局搜索得到的最值可以理解为一精确最值的一个准确范围!即进入这个范围再进行精确的搜索一定可以找到精确最值;但是,全局最优的核心是随机/概率,当进入一个准确范围时,这个范围肯定是很小的,如果之后精确搜索还用全局搜索的概率参数(此时来说波动范围太大了),很可能又会跳出这个好不容易找到的精确区域!
因此: 全局最优算法与局部最优算法是要相结合的 !全局最优算法负责划定最值所在的一个精确的、较小的范围内,即告诉局部最优算法在这个范围内继续找一定可以找到精确解;局部最优算法按照较小的步长、较高的精度继续搜索精确最值。
常用全局最优算法:蒙特卡洛(MC)、模拟退火(SA)、粒子群(PSO)、蚁群(AG);
常用局部最优算法:梯度下降法、牛顿法、阻尼牛顿法、共轭梯度法;
推荐搭配1:蒙特卡洛
推荐搭配2:粒子群 + 梯度下降
推荐搭配3:蚁群 + 梯度下降 + 重检机制
以上提到算法的 “程序 + 详细使用说明” 参考以下地址:
优化算法
优化算法是指对算法的有关性能进行优化,如时间复杂度、空间复杂度、正确性、健壮性。
大数据时代到来,算法要处理数据的数量级也越来越大以及处理问题的场景千变万化。为了增强算法的处理问题的能力,对算法进行优化是必不可少的。算法优化一般是对算法结构和收敛性进行优化。
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
遗传算法
遗传算法也是受自然科学的启发。这类算法的运行过程是先随机生成一组解,称之为种群。在优化过程中的每一步,算法会计算整个种群的成本函数,从而得到一个有关题解的排序,在对题解排序之后,一个新的种群----称之为下一代就被创建出来了。首先,我们将当前种群中位于最顶端的题解加入其所在的新种群中,称之为精英选拔法。新种群中的余下部分是由修改最优解后形成的全新解组成。
常用的有两种修改题解的方法。其中一种称为变异,其做法是对一个既有解进行微小的、简单的、随机的改变;修改题解的另一种方法称为交叉或配对,这种方法是选取最优解种的两个解,然后将它们按某种方式进行组合。尔后,这一过程会一直重复进行,直到达到指定的迭代次数,或者连续经过数代后题解都没有改善时停止。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)