(在计算机中,÷用 / 来表示) 如果是在考试时,我们要画这样表还是有点费时间,所更常见的换算过程是使用下图的连除:(图:1)请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。 6.3.2 10进制数转换为8、16进制数 非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。 来看一个例子,如何将十进制数120转换成八进制数。 用表格表示:被除数计算过程商余数120120/81501515/81711/801
120转换为8进制,结果为:170。 非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。 同样是120,转换成16进制则为:被除数计算过程商余数120120/167877/1607
120转换为16进制,结果为:78。 请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。 6.4 二、十六进制数互相转换 二进制和十六进制的互相转换比较重要。不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。我们也一样,只要学完这一小节,就能做到。首先我们来看一个二进制数:1111,它是多少呢?你可能还要这样计算:1 * 2^0 + 1 * 2^1 + 1 * 2^2 + 1 * 2^3 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。即,最高位的权值为23 = 8,然后依次是 22 = 4,21=2, 20 = 1。 记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。 下面列出四位二进制数 xxxx 所有可能的值(中间略过部分) 仅4位的2进制数 快速计算方法 十进制值 十六进值1111= 8 + 4 + 2 + 1 = 15 F1110= 8 + 4 + 2 + 0 = 14 E1101= 8 + 4 + 0 + 1 = 13 D 1100= 8 + 4 + 0 + 0 = 12 C 1011= 8 + 4 + 0 + 1 = 11 B 1010= 8 + 0 + 2 + 0 = 10 A1001= 8 + 0 + 0 + 1 = 10 9....0001= 0 + 0 + 0 + 1 = 1 10000= 0 + 0 + 0 + 0 = 0 0 二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。如(上行为二制数,下面为对应的十六进制): 1111 1101 , 1010 0101 , 1001 1011 FD , A5 , 9B 反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?先转换F:看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。接着转换 D:看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。所以,FD转换为二进制数,为: 1111 1011 由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。所以我们可以先除以16,得到16进制数:被除数计算过程商余数12341234/167727777/16413 (D)44/1604
结果16进制为: 0x4D2 然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。其中对映关系为:0100 -- 41011 -- D0010 -- 2 同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制。下面举例一个int类型的二进制数:01101101 11100101 10101111 00011011我们按四位一组转换为16进制: 6D E5 AF 1B6.5 原码、反码、补码 结束了各种进制的转换,我们来谈谈另一个话题:原码、反码、补码。 我们已经知道计算机中,所有数据最终都是使用二进制数表达。我们也已经学会如何将一个10进制数如何转换为二进制数。不过,我们仍然没有学习一个负数如何用二进制表达。 比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:00000000 00000000 00000000 000001015转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。现在想知道,-5在计算机中如何表示? 在计算机中,负数以其正值的补码形式表达。什么叫补码呢?这得从原码,反码说起。 原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。比如 00000000 00000000 00000000 00000101 是 5的 原码。 反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。取反 *** 作指:原为1,得0;原为0,得1。(1变00变1)比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。反码是相互的,所以也可称:11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。 补码:反码加1称为补码。也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。那么,补码为:11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011 所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。 再举一例,我们来看整数-1在计算机中如何表示。假设这也是一个int类型,那么: 1、先取1的原码:00000000 00000000 00000000 000000012、得反码: 11111111 11111111 11111111 111111103、得补码: 11111111 11111111 11111111 11111111 可见,-1在计算机里用二进制表达就是全1。16进制为:0xFFFFFF。 一切都是纸上说的……说-1在计算机里表达为0xFFFFFF,我能不能亲眼看一看呢?当然可以。利用C++ Builder的调试功能,我们可以看到每个变量的16进制值。
Java常用十六进制。1、计算机硬件是0101二进制的,16进制刚好是2的倍数,更容易表达一个命令或者数据
2、最早规定ASCII字符集采用的就是8bit(后期扩展了,但是基础单位还是8bit),8bit用2个16进制直接就能表达出来,不管阅读还是存储都比其他进制要方便
3、计算机中CPU运算也是遵照ASCII字符集,以16、32、64的这样的方式在发展,因此数据交换的时候16进制也显得更好
4、为了统一规范,CPU、内存、硬盘我们看到都是采用的16进制计算
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)