微软Windows 7系统开机加载过程的原理和机制

微软Windows 7系统开机加载过程的原理和机制,第1张

微软Windows 7系统开机加载过程的原理和机制

一个Windows *** 作系统用的久了,自然而然的要出很多问题,系统也会明显的变慢,原因固然很多:注册表日益庞大、无用字体越来越多、启动加载的程序越来越多、系统默认开启的服务越来越多、计划任务列表中被加入了一些莫名其妙的开机启动项目、磁盘碎片越来越多、杀毒软件的开机动作选项没有合理设置等等。不仅是用久了的系统,就算是一个新安装好的 *** 作系统,也需要进行一些设置优化,关闭不常用的服务、屏蔽一些压根无用的开机启动项目等等。下面,我们一起来看看整个Windows 7系统的完整开机加载过程的原理和机制。

1、开启电源

计算机系统将进行加电自检(POST)。如果通过,之后BIOS会读取主引导记录(MBR)——被标记为启动设备的硬盘的首扇区,并传送被Windows 7建立的控制编码给MBR。这时,Windows接管启动过程。接下来,MBR读取引导扇区-活动分区的第一扇区。此扇区包含用以启动Windows启动管理器(Windows Boot Manager)程序Bootmgr exe的代码。

2、启动菜单生成

Windows启动管理器读取“启动配置数据存储(Boot Confi guration Data store)中的'信息。此信息包含已被安装在计算机上的所有 *** 作系统的配置信息。并且用以生成启动菜单。

3、当您在启动菜单中选择下列动作时:

<1>如果您选择的是Windows 7(或Windows Vista),Windows 启动管理器(Windows Boot Manager)运行%SystemRoot%\System32文件夹中的OS loader——Winload.exe。

<2>如果您选择的是自休眠状态恢复Windows 7 或 Vista,那么启动管理器将装载Winresume.exe并恢复您先前的使用环境。

<3>如果您在启动菜单中选择的是早期的Windows版本,启动管理器将定位系统安装所在的卷,并且加载Windows NT风格的早期OS loader(Ntldr.exe)——生成一个由boot.ini内容决定的启动菜单。

4、核心文件加载至登录画面

Windows7启动时,加载其核心文件 Ntoskrnl.exe和hal.dll——从注册表中读取设置并加载驱动程序。接下来将运行Windows会话管理器(smss.exe)并且启动 Windows启动程序(Wininit exe),本地安全验证(Lsass.exe)与服务(services.exe)进程,完成后,就可以登录你的系统了。

5、登陆后的开机加载项目

当你输入您的用户名和密码,登陆进入您的系统那一刻,硬盘发出的声音和硬盘灯的再次提醒你:系统正在加载您这个账户的个人专用设置文件,正在加载当前电脑和当前用户所指定的一些开机启动项目内的软件。这是众多软件(包括木马病毒)最喜欢的地方,包括我们最常用的QQ、MSN、杀毒软件,因为它们要靠这里来常驻桌面右下角和内存之中,方便进行正当的和不正当的一些工作(此处指的是某些流氓和恶意软件)。当这些加载完毕,才算真正进入了您的 Windows桌面。

fpga

Xilinx FPGA通过FLASH加载程序的时序

哈塞给,套离开套

原创

关注

9点赞·7212人阅读

尽管FPGA的配置模式各不相同,但整个配置过程中FPGA的工作流程是一致的,分为三个部分:设置、加载、启动。

复位结束配置开始

有多种方式使FPGA的配置进入这一过程。在上电时,电压达到FPGA要求之前,FPGA的上电复位模块将使FPGA保持在复位状态外部控制PROG_B引脚出现一个低脉冲也可以使FPGA保持在复位状态。

清除配置存储内容

这一步称为初始化,当FPGA复位结束,配置存储器的内容会被自动清除。在这个步骤中,除配置专用接口外,FPGA I/O均被置于高阻态。在整个初始化过程中,INIT_B引脚被置低并在初始化结束后恢复高电平。如果INIT_B信号在外部被拉低,FPGA将一直停留在初始化状态。注意PROG_B信号的脉宽不能太窄。

采样控制信号

初始化结束后,INIT_B信号回到高电平。FPGA开始采集模式选择引脚M[1:0]和变量选择引脚VS。如果为主动模式,FPGA很快就会给出有效的CCLK。VS信号只在主动BPI及其SPI模式中生效。此时,FPGA开始在配置时钟的上升沿对配置数据进行采样。

同步化

每一个FPGA配置数据流都有一个同步头,它是一段特殊的同步字。同步字主要用于帮助FPGA确定正确的数据位置。同步字之前的配置数据都会被FPGA忽略,也就是FPGA仅仅在同步化之后才正式开始接收配置数据。一般而言,同步字都是由0/1数目相同的二进制数组成的,如Spartan3为AA995566。

ID检查

FPGA同步化后,会自动检测配置流中的器件ID和目标器件ID是否一致。这一步确保了FPGA不会被错误的配置流误配置。

32位的ID中包含了28位的特征值和4位掩码。特征值包括厂商信息,器件族,器件规模等。当器件ID检查遇到问题时,FPGA会将内部寄存器的第一位ID_Err置高,软件也会显示错误信息。

载入配置内容

在ID检查顺利通过后,FPGA开始加载配置数据。

CRC校验

在加载数据过程中,FPGA会对每一帧数据进行CRC校验。如果失败,FPGA会将INIT_B信号拉低并终止配置过程。

启动序列

FPGA配置数据加载完后,FPGA进入启动序列。启动序列事件的默认顺序为先释放DONE引脚,然后激活I/O,最后启动写使能。实际使用中,可以通过BitGen参数对启动顺序进行设置来满足不同的需求。

、---------------------------------------------------

摘要:提出了由于FPGA容量的攀升和配置时间的加长,采用常规设计会导致系统功能失效的观点。通过详细描述Xilinx FPGA各种配置方式及其在电路设计中的优缺点,深入分析了FPGA上电时的配置步骤和工作时序以及各阶段I/O 管脚状态,说明了FPGA上电配置对电路功能的严重影响,最后针对不同功能需求的FPGA外围电路提出了有效的设计建议。

1 引言

随着半导体和芯片技术的飞速发展,现在的FPGA集成了越来越多的可配置逻辑资源、各种各样的外部总线接口以及丰富的内部RAM资源,使其在国防、医疗、消费电子等领域得到了越来越广泛的应用。但是FPGA 大多数是基于SRAM工艺的,具有易失性,因此FPGA 通常使用外部存储器件(如PROM)存储必需的配置信息,防止设备掉电后FPGA丢失自我配置能力。但FPGA配置在一定的条件和时间下才能成功完成,随着FPGA容量的不断攀升,配置时间也被大大加长,上电时如不充分考虑FPGA的配置时序以及对其他器件的影响,根据常规经验设计电路,往往会影响系统其他外围器件的正常工作,严重时会导致整个系统的失效。因此,FPGA的配置方式和上电时序已成为系统设计的重要一环。

2 Xilinx

exe是可执行文件的文件格式之一,可以在系统中直接运行。即是可以被访问的,这要看是什么文件。如是系统文件有些文件在电脑启动,及进行一些 *** 作时必须被执行即访问。否则会造成系统错误但有些文件也是不必被访问的。.exe 扩展名的文件名后按 Enter键就能运行。不过有些是病毒文件,所以要注意区分一下。

原理:

EXE 文件比较复杂,每个EXE文件都有一个文件头,结构如下:

EXE文件头信息

―――――――――――――――――――

├ 偏移量 ┤ 意义 ┤

├00h-01h ┤MZ'EXE文件标记┤

├2h-03h ┤文件长度除512的余数 ┤

├04h-05h ┤...............商 ┤

├06h-07h ┤重定位项的个数 ┤

├08h-09h ┤文件头除16的商┤

├0ah-0bh ┤程序运行所需最小段数 ┤

├0ch-0dh ┤..............大.... ┤

├oeh-0fh ┤堆栈段的段值 (SS) ┤

├10h-11h ┤........sp ┤

├12h-13h ┤文件校验和 ┤

├14h-15h ┤IP ┤

├16h-17h ┤CS ┤

├18h-19h ┤............ ┤

├1ah-1bh ┤............ ┤

├1ch ┤............ ┤

―――――――――――――――――――――――――

.EXE文件包含一个文件头和一个可重定位程序映象。文件头包含MS-DOS用于加载程序的信息,例如程序的大小和寄存器的初始值。文件头还指向一个重定位表,该表包含指向程序映象中可重定位段地址的指针链表。文件头的形式与EXEHEADER结构对应:

EXEHEADER STRUC

exSignature dw 5A4Dh .EXE标志

exExraBytes dw ? 最后(部分)页中的字节数

exPages dw ? 文件中的全部和部分页数

exRelocItems dw ? 重定位表中的指针数

exHeaderSize dw ? 以字节为单位的文件头大小

exMinAlloc dw ? 最小分配大小

exMaxAlloc dw ? 最大分配大小

exInitSS dw ? 初始SS值

exInitSP dw ? 初始SP值

exChechSum dw ? 补码校验值

exInitIP dw ? 初始IP值

exInitCS dw ? 初始CS值

exRelocTable dw ? 重定位表的字节偏移量

exOverlay dw ? 覆盖号

EXEHEADER ENDS程序映象,包含处理器代码和程序的初始数据,紧接在文件头之后。它的大小以字节为单位,等于.EXE文件的大小减去文件头的大小,也等于exHeaderSize的域的值乘以16。MS-DOS通过把该映象直接从文件拷贝到内存加载.EXE程序然后调整定位表中说明的可重定位段地址。

定位表是一个重定位指针数组,每个指向程序映象中的可重定位段地址。文件头中的exRelocItems域说明了数组中指针的个数,exRelocTable域说明了分配表的起始文件偏移量。每个重定位指针由两个16位值组成:偏移量和段值。为加载.EXE程序,MS-DOS首先读文件头以确定.EXE标志并计算程序映象的大小。然后它试图申请内存。首先,它计算程序映象文件的大小加上PSP的大小再加上EXEHEADER结构中的exMinAlloc域说明的内存大小这三者之和,如果总和超过最大可用内存块的大小。则MS-DOS停止加载程序并返回一个出错值。否则面,它计算程序映象的大小加上PSP的大小再加上EXEHEADER结构中exMaxAlloc域说明的内存大小之和,如果第二个总和小于最大可用内存块的大小,则MS-DOS 分配计算得到的内存量。否则,它分配最大可用内存块。分配完内存后,MS-DOS确定段地址,也称为起始段地址,MS-DOS从此处加载程序映象。如果exMinAlloc域和exMaxAlloc域中的值都为零,则MS-DOS把映象尽可能地加载到内存最高端。否则,它把映象加载到紧挨着PSP域之上。接下来,MS-DOS读取重定位表中的项目调整所有由可重定位指针说明的段地址。对于重定位表中的每个指针,MS-DOS寻找程序映象中相应的可重定位段地址,并把起始段地址加到它之上。一旦调整完毕,段地址便指向了内存中被加载程序的代码和数据段。 MS-DOS在所分配内存的最低部分建造256字节的PSP,把AL和AH设置为加载 .COM程序时所设置的值。MS-DOS使用文件头中的值设置SP与SS,调整SS初始值,把起始地址加到它之上。MS-DOS还把ES和DS设置为PSP的段地址.最后,MS-DOS从程序文件头读取CS和IP的初始值,把起始段地址加到CS之上,把控制转移到位于调整后地址处的程序。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11090052.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-13
下一篇 2023-05-13

发表评论

登录后才能评论

评论列表(0条)

保存