迭代的概念
函数
在数学中,迭代函数是在碎形和动力系统中深入研究的对象。迭代函数是重复的与自身复合的函数,这个过程叫做迭代。
模型
迭代模型是RUP(Rational Unified Process,统一软件开发过程,统一软件过程)推荐的周期模型。
迭代算法是用计算机解决问题的一种基本 方法 。它利用计算机运算速度快、适合做重复性 *** 作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。
迭代的基本算法
有些国外的教材,如《C++ Primer》第四版的中文版,会把iterative翻译成迭代。
在java中Iterative 仅用于遍历集合,本身并不提供盛装对象的能力。如果需要创建Iterative对象,则必须有一个被迭代的集合。没有集合的Iterative仿佛无本之木,没有存在的价值。
iterative是反复的意思,所以,有时候,迭代也会指循环执行,反复执行的意思。
利用迭代算法解决问题,需要做好以下三个方面的工作:
确定变量
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
建立关系式
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
过程控制
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。不能让迭代过程无休止地重复执行下去。迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来另一种是所需的迭代次数无法确定。对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制对于后一种情况,需要进一步分析出用来结束迭代过程的条件。
迭代的应用实例
迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:
⑴ 选一个方程的近似根,赋给变量x0
⑵ 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0
⑶ 当x0与x1的差的绝对值还大于指定的精度要求时,重复步骤⑵的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。上述算法用C程序的形式表示为:
迭代法计算步骤
迭代法
迭代法(Iteration)是一种不断用变量的旧值递推出新值的解决问题的方法。迭代算法是用计算机解决问题的一种基本方法,一般用于数值计算。累加、累乘都是迭代算法的基础应用。典型案例:牛顿迭代法
步骤:
确定迭代模型:分析得出前一个(或几个)值与其下一个值的迭代关系数学模型;
建立迭代关系式
对迭代过程进行控制
经典案例:
示例: 斐波那契数列:1、1、2、3、5、8、13、21、34
对于斐波那契数列,当n趋于无穷时,数列最后的两项的商 (xn-1/xn) 趋于黄金分割数0.618
在matlab中执行循环迭代的方法:
a是一个由nk个数组成的数组、
对应的y也应该是由nk个数组成的数组
a=某数组
b=某常数
d=某常数
for k=1:1:nk
c=1
n=0
errf=1
求X1000:
while errf>1e-8n<100%计算结果精度要求1e-8,如果迭代超过100次还不收敛,退出循环。
y(k)=a(k)*b*c
c1=y*d
errf=(c1-c)/c1
X1000=c1。
扩展资料利用迭代算法解决问题,需要做好以下三个方面的工作:
一、确定迭代变量。在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
参考资料:百度百科——迭代循环
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)