本文由青松原创并依GPL-V2及其后续版本发放,转载请注明出处且应包含本行声明。\x0d\x0a\x0d\x0aC++中常用rand()
函数生成
随机数,但严格意义上来讲生成的只是伪随机数(pseudo-random integral number)。生成随机数时需要我们指定一个种子,如果在
程序内循环,那么下一次生成随机数时调用上一次的结果作为种子。但如果分两次执行程序,那么由于种子相同,生成的“随机数”也是相同的。\x0d\x0a\x0d\x0a在工程应用时,我们一般将系统当前时间(Unix时间)作为种子,这样生成的随机数更接近于实际意义上的随机数。给一下例程如下:\x0d\x0a\x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0ausing namespace std\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0adouble random(double,double)\x0d\x0asrand(unsigned(time(0)))\x0d\x0afor(int icnt = 0icnt != 10++icnt)\x0d\x0acout <<"No." <<icnt+1 <<": " <<int(random(0,10))<<endl\x0d\x0areturn 0\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0areturn start+(end-start)*rand()/(RAND_MAX + 1.0)\x0d\x0a}\x0d\x0a/* 运行结果\x0d\x0a* No.1: 3\x0d\x0a* No.2: 9\x0d\x0a* No.3: 0\x0d\x0a* No.4: 9\x0d\x0a* No.5: 5\x0d\x0a* No.6: 6\x0d\x0a* No.7: 9\x0d\x0a* No.8: 2\x0d\x0a* No.9: 9\x0d\x0a* No.10: 6\x0d\x0a*/\x0d\x0a利用这种方法能不能得到完全意义上的随机数呢?似乎9有点多哦?却没有1,4,7?!我们来做一个概率实验,生成1000万个随机数,看0-9这10个数出现的频率是不是大致相同的。程序如下:\x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0a#include \x0d\x0ausing namespace std\x0d\x0a\x0d\x0aint main()\x0d\x0a{\x0d\x0adouble random(double,double)\x0d\x0aint a[10] = \x0d\x0aconst int Gen_max = 10000000\x0d\x0asrand(unsigned(time(0)))\x0d\x0a\x0d\x0afor(int icnt = 0icnt != Gen_max++icnt)\x0d\x0aswitch(int(random(0,10)))\x0d\x0a{\x0d\x0acase 0: a[0]++break\x0d\x0acase 1: a[1]++break\x0d\x0acase 2: a[2]++break\x0d\x0acase 3: a[3]++break\x0d\x0acase 4: a[4]++break\x0d\x0acase 5: a[5]++break\x0d\x0acase 6: a[6]++break\x0d\x0acase 7: a[7]++break\x0d\x0acase 8: a[8]++break\x0d\x0acase 9: a[9]++break\x0d\x0adefault: cerr <<"Error!" <<endlexit(-1)\x0d\x0a}\x0d\x0a\x0d\x0afor(int icnt = 0icnt != 10++icnt)\x0d\x0acout <<icnt <<": " <<setw(6) <<setiosflags(ios::fixed) <<setprecision(2) <<double(a[icnt])/Gen_max*100 <<"%" <<endl\x0d\x0a\x0d\x0areturn 0\x0d\x0a}\x0d\x0a\x0d\x0adouble random(double start, double end)\x0d\x0a{\x0d\x0areturn start+(end-start)*rand()/(RAND_MAX + 1.0)\x0d\x0a}\x0d\x0a/* 运行结果\x0d\x0a* 0: 10.01%\x0d\x0a* 1: 9.99%\x0d\x0a* 2: 9.99%\x0d\x0a* 3: 9.99%\x0d\x0a* 4: 9.98%\x0d\x0a* 5: 10.01%\x0d\x0a* 6: 10.02%\x0d\x0a* 7: 10.01%\x0d\x0a* 8: 10.01%\x0d\x0a* 9: 9.99%\x0d\x0a*/\x0d\x0a可知用这种方法得到的随机数是满足统计规律的。\x0d\x0a\x0d\x0a另:在Linux下利用GCC编译程序,即使我执行了1000000次运算,是否将random函数定义了inline函数似乎对程序没有任何影响,有理由相信,GCC已经为我们做了优化。但是冥冥之中我又记得要做inline优化得加O3才行...\x0d\x0a\x0d\x0a不行,于是我们把循环次数改为10亿次,用time命令查看执行时间:\x0d\x0achinsung@gentoo ~/workspace/test/Debug $ time ./test \x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal2m7.768s\x0d\x0auser2m4.405s\x0d\x0asys 0m0.038s\x0d\x0achinsung@gentoo ~/workspace/test/Debug $ time ./test \x0d\x0a0: 10.00%\x0d\x0a1: 10.00%\x0d\x0a2: 10.00%\x0d\x0a3: 10.00%\x0d\x0a4: 10.00%\x0d\x0a5: 10.00%\x0d\x0a6: 10.00%\x0d\x0a7: 10.00%\x0d\x0a8: 10.00%\x0d\x0a9: 10.00%\x0d\x0a\x0d\x0areal2m7.269s\x0d\x0auser2m4.077s\x0d\x0asys 0m0.025s\x0d\x0a\x0d\x0a前一次为进行inline优化的情形,后一次为没有作inline优化的情形,两次结果相差不大,甚至各项指标后者还要好一些,不知是何缘由...
源程序代码以及算法解释如下:
产生1-10随机数程序:
#include <iostream>
#include <time.h>
using namespace std
int main()
{
const int n = 10//定义随机数个数
int number[n] = { NULL }//定义随机数存储的数组
srand((unsigned)time(NULL))//初始化随机函数
number[0] = rand() % n//第一个随机数无需比较
cout <<number[0] <<" "
for (int i = 1i <ni++)//其余随机数循环产生
{
int j = 0
number[i] = rand() % n//产生随机数
while (1)
{
if (number[i] == number[j])//若有相同则继续循环重新安排随机数
{
number[i] = rand() % n//产生随机数
j = 0//若遇到相同的就从头遍历
continue
}
if (j == (i - 1))//若遍历完就跳出
break
j++
}
cout <<number[i] <<" "
}
cout <<endl
return 0
}
程序运行结果如下:
扩展资料:
利用vector进行随机数输出:
#include <iostream>
#include <vector>
#include <time.h>
using namespace std
int main()
{
const int n = 10
int randnum
vector<int>number
for (int i = 0i <ni++)
{
number.push_back(i + 1) //从尾部添加元素
cout <<number[i] <<" "
}
cout <<endl
srand((unsigned)time(NULL))
for (int j = 0j <nj++) //其余随机数循环产生
{
randnum = rand() % (n - j) //rand函数生成的随机数是0-(n-1)
cout <<number.at(randnum) <<" "
number.erase(number.begin() + randnum)
}
cout <<endl
return 0
}
评论列表(0条)