案例详解SPSS聚类分析全过程

案例详解SPSS聚类分析全过程,第1张

案例详解SPSS聚类分析全过程

案例数据源:

有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。【一】问题一:选择那些变量进行聚类?——采用“R型聚类”

1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。

2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximitymatrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。

【二】问题二:20中啤酒能分为几类?——采用“Q型聚类”1、现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。2、主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。我这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。2、这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。【四】问题四:聚类结果的解释?——采用”均值比较描述统计“1、聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。2、我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。

步骤如下:

*** 作设备:戴尔电脑

*** 作系统:win10

1、首先通过快捷方式打开SPSS分析工具,默认显示数据视图。

2、切换到变量视图,然后添加六个变量,分别为姓名、M、C、E、S和R,其中姓名是字符串类型,其他都是数字类型。

3、返回到数据视图,向六个变量列插入对应的数据。

4、点击分析菜单,然后依次选择分类--->系统聚类。

5、打开系统聚类分析窗口,将变量M和变量C移到变量框中。

6、点击右侧统计按钮,打开系统聚类分析:统计窗口,选择集中计划,接着点击继续。

7、单击图按钮,打开图设置窗口,勾选谱系图,然后点击继续。

8、接着点击方法按钮,打开系统聚类分析:方法窗口,聚类方法选择瓦尔德法,然后单击继续。

9、最后点击系统聚类分析窗口中的确定按钮,然后生成系统聚类分析结果和图形展示。

依次点击:analyse--classify--hierarchical cluster,打开分层聚类对话框

spss分层聚类的 *** 作方法和分析方法

2

在聚类分析对话框中,

将聚类用到的变量都放到variables中

spss分层聚类的 *** 作方法和分析方法

将地区变量放入case标签中,他的意思是每一个数据都用地区这个值来命名

spss分层聚类的 *** 作方法和分析方法

点击plot按钮,打开对话框,设置要输出的图

spss分层聚类的 *** 作方法和分析方法

在打开的对话框中,勾选dendrogram,然后点击continue按钮。这个dendrogram是层次聚类谱系图,最后我们还会分析这个图

spss分层聚类的 *** 作方法和分析方法

点击method按钮,设置聚类的方法

spss分层聚类的 *** 作方法和分析方法

如图所示,通常我们用到的聚类方法是wards method,接着我们需要把变量转换成z分数,点击continue按钮

spss分层聚类的 *** 作方法和分析方法

点击save按钮,填写希望保存的聚类类别数范围3--8,据此选项,spss将在数据编辑窗口中添加7个变量,分别标明聚类数位3--8类情况下各省市所属的类

spss分层聚类的 *** 作方法和分析方法

设置输出的聚类类别数范围3--8,点击continue按钮

spss分层聚类的 *** 作方法和分析方法

点击ok按钮,开始输出数据处理的结果

spss分层聚类的 *** 作方法和分析方法

你看到的下面的这个表格叫做聚类过程表,其内容并不是经常被关注,因为大部分实际应用中,聚类的具体过程是被忽略的。但是聚类系数可以帮助我们判断将数据分为几类最合适,判断的方法是,相邻的两个数据变化的幅度显著大于前面的系数的变化范围,这时候分类在这里就是最好的

spss分层聚类的 *** 作方法和分析方法

最后是层次聚类谱系图,从这个图中可看到聚类的过程,根据你的需求选择分类的组数

spss分层聚类的 *** 作方法和分析方法


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/11198402.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-14
下一篇 2023-05-14

发表评论

登录后才能评论

评论列表(0条)

保存